|学案下载
搜索
    上传资料 赚现金
    备战中考初中数学导练学案50讲—第15讲概率(讲练版)
    立即下载
    加入资料篮
    备战中考初中数学导练学案50讲—第15讲概率(讲练版)01
    备战中考初中数学导练学案50讲—第15讲概率(讲练版)02
    备战中考初中数学导练学案50讲—第15讲概率(讲练版)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战中考初中数学导练学案50讲—第15讲概率(讲练版)

    展开
    这是一份备战中考初中数学导练学案50讲—第15讲概率(讲练版),共24页。学案主要包含了疑难点拨等内容,欢迎下载使用。

    备战中考初中数学导练学案50讲
    第15讲 概率
    【疑难点拨】
    1.似是而非,不知道树状图的标准画法;画树状图是列举事件的所有可能结果的重要方法。树状图是将实验中的第一步的结果写在第一层,第二步的结果写在第二层,以此类推,把所有事件可能的结果一一列出,其特点直观又有条理性。列表法也是列举随机事件的所有可能结果的重要方法,当事件涉及两步时,将其中一个步骤作为行,另一个步骤作为列,列出表格,最后将事件所有可能的结果列在表格中。
    2.没有搞清树状图应用的条件;列表法或树状图是查找事件所有可能结果的非常有效的方法,要根据“求某事件的概率”的题目的具体特点,选用列表法或画树状图法,找出事件所有等可能结果,才能正确解决这类问题。利用列举法求概率的关键在于正确列举出实验结果的各种可能性,当事件只有一步或涉及一个因素时,通常用直接列举法。
    3.同一件事,同一属性,错误地用两次;使用概率公式计算时,关键在于求出和的值,在求的值时,必须注意这种结果是等可能的,做到不重复不遗漏.
    4.树状图脱离实际而导致错误:概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小;而频率在大量重复试验的前提下可以近似地作为同一个事件的概率.
    5.对事件的含义模糊不清:(1)概率是表示一个事件发生的可能性大小的那个数. (2)一个事件发生机会的大小可以用频率的稳定值 来估计;于是概率也可以用频率的稳定值来表示. (3)求一个事件的概率的基本方法是通过大量的重复试验。
    【基础篇】
    一、选择题:
    1. (2018•山东淄博•4分)下列语句描述的事件中,是随机事件的为(  )
    A.水能载舟,亦能覆舟 B.只手遮天,偷天换日
    C.瓜熟蒂落,水到渠成 D.心想事成,万事如意
    2. (2018·湖北省宜昌·3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为(  )
    A. B. C. D.
    3. (2018·湖南省衡阳·3分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是(  )
    A.连续抛一枚均匀硬币2次必有1次正面朝上
    B.连续抛一枚均匀硬币10次都可能正面朝上
    C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次
    D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
    4. (2018·山东临沂·3分)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是(  )
    A. B. C. D.
    5. (2018·四川自贡·4分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是(  )
    A. B. C. D.
    二、填空题:
    6. (2018•江苏盐城•3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.

    7. (2018•山东滨州•5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是  .
    8. (2018•江苏扬州•3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是  .
    三、解答与计算题:
    9. (2018·山东泰安·8分)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:

    (1)请估计本校初三年级等级为A的学生人数;
    (2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.








    10. (2018·山东青岛·6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.








    【能力篇】
    一、选择题:
    11. (2018•四川凉州•3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是(  )
    A. B. C. D.
    12. (2018·湖北省武汉·3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是(  )
    13. (2018·山东威海·3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是(  )
    A. B. C. D.
    二、填空题:
    14. (2018•四川成都•3分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为 ,则该盒子中装有黄色兵乓球的个数是________.
    15. (2018•四川成都•3分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为 ,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.

    三、解答与计算题:
    16. (2017湖北荆州)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:

    (1)补全条形统计图
    (2)该年级共有700人,估计该年级足球测试成绩为D等的人数为   人;
    (3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.







    17. (2018•甘肃白银,定西,武威)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.

    (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?
    (2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.





    18. (2017•乐山)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
    组别
    分数段(分)
    频数
    频率
    A组
    60≤x<70
    30
    0.1
    B组
    70≤x<80
    90
    n
    C组
    80≤x<90
    m
    0.4
    D组
    90≤x<100
    60
    0.2
    (1)在表中:m=   ,n=  ;
    (2)补全频数分布直方图;
    (3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在   组;
    (4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.












    【探究篇】
    19. (2018·山东潍坊·8分)为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.

    (1)求n并补全条形统计图;
    (2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;
    (3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.
















    20. (2017湖北随州)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.

    请根据图中信息,解答下列问题:
    (1)参加初赛的选手共有  名,请补全频数分布直方图;
    (2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?
    (3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.















    第15讲 概率
    【疑难点拨】
    1.似是而非,不知道树状图的标准画法;画树状图是列举事件的所有可能结果的重要方法。树状图是将实验中的第一步的结果写在第一层,第二步的结果写在第二层,以此类推,把所有事件可能的结果一一列出,其特点直观又有条理性。列表法也是列举随机事件的所有可能结果的重要方法,当事件涉及两步时,将其中一个步骤作为行,另一个步骤作为列,列出表格,最后将事件所有可能的结果列在表格中。
    2.没有搞清树状图应用的条件;列表法或树状图是查找事件所有可能结果的非常有效的方法,要根据“求某事件的概率”的题目的具体特点,选用列表法或画树状图法,找出事件所有等可能结果,才能正确解决这类问题。利用列举法求概率的关键在于正确列举出实验结果的各种可能性,当事件只有一步或涉及一个因素时,通常用直接列举法。
    3.同一件事,同一属性,错误地用两次;使用概率公式计算时,关键在于求出和的值,在求的值时,必须注意这种结果是等可能的,做到不重复不遗漏.
    4.树状图脱离实际而导致错误:概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小;而频率在大量重复试验的前提下可以近似地作为同一个事件的概率.
    5.对事件的含义模糊不清:(1)概率是表示一个事件发生的可能性大小的那个数. (2)一个事件发生机会的大小可以用频率的稳定值 来估计;于是概率也可以用频率的稳定值来表示. (3)求一个事件的概率的基本方法是通过大量的重复试验。
    【基础篇】
    一、选择题:
    1. (2018•山东淄博•4分)下列语句描述的事件中,是随机事件的为(  )
    A.水能载舟,亦能覆舟 B.只手遮天,偷天换日
    C.瓜熟蒂落,水到渠成 D.心想事成,万事如意
    【考点】X1:随机事件.
    【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.
    【解答】解:A、水能载舟,亦能覆舟,是必然事件,故此选项错误;
    B、只手遮天,偷天换日,是不可能事件,故此选项错误;
    C、瓜熟蒂落,水到渠成,是必然事件,故此选项错误;
    D、心想事成,万事如意,是随机事件,故此选项正确.
    故选:D.
    【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.
    2. (2018·湖北省宜昌·3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为(  )
    A. B. C. D.
    【分析】直接利用概率公式求解.
    【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=.
    故选:B.
    【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    3. (2018·湖南省衡阳·3分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是(  )
    A.连续抛一枚均匀硬币2次必有1次正面朝上
    B.连续抛一枚均匀硬币10次都可能正面朝上
    C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次
    D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
    【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;
    B、连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;
    C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;
    D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.
    故选:A.
    4. (2018·山东临沂·3分)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是(  )
    A. B. C. D.
    【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.
    【解答】解:如图所示:,
    一共有9种可能,符合题意的有1种,
    故小华和小强都抽到物理学科的概率是:.
    故选:D.
    【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.
    5. (2018·四川自贡·4分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是(  )
    A. B. C. D.
    【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.
    【解答】解:∵点(m,n)在函数y=的图象上,
    ∴mn=6.
    列表如下:
    m
    ﹣1
    ﹣1
    ﹣1
    2
    2
    2
    3
    3
    3
    ﹣6
    ﹣6
    ﹣6
    n
    2
    3
    ﹣6
    ﹣1
    3
    ﹣6
    ﹣1
    2
    ﹣6
    ﹣1
    2
    3
    mn
    ﹣2
    ﹣3
    6
    ﹣2
    6
    ﹣12
    ﹣3
    6
    ﹣18
    6
    ﹣12
    ﹣18
    mn的值为6的概率是=.
    故选:B.
    【点评】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出mn=6的概率是解题的关键.
    二、填空题:
    6. (2018•江苏盐城•3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.

    【答案】
    【考点】几何概率
    【解析】【解答】解:一共有9个小方格,阴影部分的小方格有4个,则P=
    故答案为:
    【分析】根据概率公式P= ,找出所有结果数n,符合事件的结果数m,代入求值即可。
    7. (2018•山东滨州•5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是  .
    【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.
    【解答】解:列表如下:

    由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,
    所以点M在第二象限的概率是=,
    故答案为:.
    【点评】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.
    8. (2018•江苏扬州•3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是  .
    【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.
    【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,
    而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;
    故其概率为:.
    【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.
    三、解答与计算题:
    9. (2018·山东泰安·8分)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:

    (1)请估计本校初三年级等级为的学生人数;
    (2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.
    【分析】(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;
    (2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.
    【解答】解:(1)由题意得,所抽取班级的人数为:(人),
    该班等级为的人数为:(人),
    该校初三年级等级为的学生人数约为:(人).
    答:估计该校初三等级为的学生人数约为125人.
    (2)设两位满分男生为,,三位满分女生为,,.
    从这5名同学中选3名同学的所有可能结果为:,,,,,,,,,,共10种情况.
    其中,恰好有2名女生,1名男生的结果为:,,,,,,共6种情况.
    所以恰有2名女生,1名男生的概率为.
    【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
    10. (2018·山东青岛·6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.
    【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.
    【解答】解:不公平,
    列表如下:

    4
    5
    6
    4
    8
    9
    10
    5
    9
    10
    11
    6
    10
    11
    12
    由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,
    所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,
    由≠知这个游戏不公平;
    【点评】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.
    【能力篇】
    一、选择题:
    11. (2018•四川凉州•3分)小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是(  )
    A. B. C. D.
    【分析】列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.
    【解答】解:画树状图,得

    ∴共有8种情况,经过每个路口都是绿灯的有一种,
    ∴实际这样的机会是,
    故选:B.
    【点评】此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
    12. (2018·湖北省武汉·3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是(  )
    A. B. C. D.
    【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
    【解答】解:画树状图为:

    共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
    所以两次抽取的卡片上数字之积为偶数的概率==.
    故选:C.
    【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,
    13. (2018·山东威海·3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是(  )
    A. B. C. D.
    【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.
    【解答】解:画树状图如下:

    由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,
    所以抽取的两张卡片上数字之积为负数的概率为=,
    故选:B.
    【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    二、填空题:
    14. (2018•四川成都•3分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为 ,则该盒子中装有黄色兵乓球的个数是________.
    【答案】6
    【考点】概率公式,简单事件概率的计算
    【解析】【解答】解:设该盒子中装有黄色兵乓球的个数为x个,根据题意得:= ,解之:x=6
    故答案为:6
    【分析】根据黄球的概率,建立方程求解即可。
    15. (2018•四川成都•3分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为 ,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为________.

    【答案】
    【考点】勾股定理,正方形的性质,简单事件概率的计算
    【解析】【解答】解:∵四个直角三角形都是全等的,它们的两直角边之比均为 ,设两直角边的长分别为2x、3x
    ∴大正方形的面积为(2x)2+(3x)2=13x2
    小正方形的边长为3x-2x=x,则小正方形的面积为x2,
    ∴阴影部分的面积为:13x2-x2=12x2,
    ∴针尖落在阴影区域的概率为:
    故答案为:
    【分析】根据已知四个直角三角形都是全等的,它们的两直角边之比均为 ,因此设两直角边的长分别为2x、3x,利用勾股定理求出大正方形的面积,再求出小正方形的面积,再求出阴影部分的面积,利用概率公式,求解即可。
    三、解答与计算题:
    16. (2017湖北荆州)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:

    (1)补全条形统计图
    (2)该年级共有700人,估计该年级足球测试成绩为D等的人数为 56 人;
    (3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
    【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.
    【分析】(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;
    (2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;
    (3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.
    【解答】解:(1)总人数为14÷28%=50人,
    B等人数为50×40%=20人.
    条形图补充如下:

    (2)该年级足球测试成绩为D等的人数为700×=56(人).
    故答案为56;
    (3)画树状图:

    共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,
    所以恰好选到甲、乙两个班的概率是=.
    17. (2018•甘肃白银,定西,武威)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.

    (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?
    (2)现将方格内空白的小正方形(,,,,,)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.
    【答案】(1);(2)
    【解析】【分析】直接写出米粒落在阴影部分的概率即可.
    画树状图写出所有的情况,根据概率的求法计算概率.
    【解答】解:(1)米粒落在阴影部分的概率为;
    (2)列表:

    第二次
    A
    B
    C
    D
    E
    F
    A

    (A,B)
    (A,C)
    (A,D)
    (A,E)
    (A,F)
    B
    (B , A)

    (B,C)
    (B,D)
    (B,E)
    (B,F)
    C
    (C , A)
    (C,B)

    (C,D)
    (C,E)
    (C,F)
    D
    (D , A)
    (D,B)
    (D,C)

    (D,E)
    (D,F)
    E
    (E , A)
    (E,B)
    (E,C)
    (E,D)

    (E,F)
    F
    (F , A)
    (F , B)
    (F , C)
    (F , D)
    (F,E)


    共有30种等可能的情况,其中图案是轴对称图形的有10种,
    故图案是轴对称图形的概率为;
    【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    18. (2017•乐山)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:
    组别
    分数段(分)
    频数
    频率
    A组
    60≤x<70
    30
    0.1
    B组
    70≤x<80
    90
    n
    C组
    80≤x<90
    m
    0.4
    D组
    90≤x<100
    60
    0.2
    (1)在表中:m= 120 ,n= 0.3 ;
    (2)补全频数分布直方图;
    (3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 C 组;
    (4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.

    【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.
    【分析】(1)先根据A组频数及其频率求得总人数,再根据频率=频数÷总人数可得m、n的值;
    (2)根据(1)中所求结果即可补全频数分布直方图;
    (3)根据中位数的定义即可求解;
    (4)画树状图列出所有等可能结果,再找到抽中A、C的结果,根据概率公式求解可得.
    【解答】解:(1)∵本次调查的总人数为30÷0.1=300(人),
    ∴m=300×0.4=120,n=90÷300=0.3,
    故答案为:120,0.3;
    (2)补全频数分布直方图如下:

    (3)由于共有300个数据,则其中位数为第150、151个数据的平均数,
    而第150、151个数据的平均数均落在C组,
    ∴据此推断他的成绩在C组,
    故答案为:C;
    (4)画树状图如下:

    由树状图可知,共有12种等可能结果,其中抽中A﹑C两组同学的有2种结果,
    ∴抽中A﹑C两组同学的概率为P=212=.
    【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    【探究篇】
    19. (2018·山东潍坊·8分)为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区户家庭的月用水量,绘制了下面不完整的统计图.

    (1)求并补全条形统计图;
    (2)求这户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;
    (3)从月用水量为和的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为和恰好各有一户家庭的概率.
    【答案】(1)n=20,补全条形图见解析;(2)这20户家庭的月平均用水量为6.95立方米,小莹所住小区月用水量低于的家庭户数为231;(3),
    【解析】分析:(1)根据月用水量为9m3和10m3的户数及其所占百分比可得总户数,再求出5m3和8m3的户数即可补全图形;
    (2)根据加权平均数的定义计算可得月平均用水量,再用总户数乘以样本中低于月平均用水量的家庭户数所占比例可得;
    (3)列表得出所有等可能结果,从中找到满足条件的结果数,根据概率公式计算可得.
    详解:(1)n=(3+2)÷25%=20,
    月用水量为8m3的户数为20×55%-7=4户,
    月用水量为5m3的户数为20-(2+7+4+3+2)=2户,
    补全图形如下:

    (2)这20户家庭的月平均用水量为=6.95(m3),
    因为月用水量低于6.95m3的有11户,
    所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;
    (3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,
    列表如下:

    a
    b
    c
    d
    e
    a

    (b,a)
    (c,a)
    (d,a)
    (e,a)
    b
    (a,b)

    (c,b)
    (d,b)
    (e,b)
    c
    (a,c)
    (b,c)

    (d,c)
    (e,c)
    d
    (a,d)
    (b,d)
    (c,d)

    (e,d)
    e
    (a,e)
    (b,e)
    (c,e)
    (d,e)


    由表可知,共有20种等可能结果,其中满足条件的共有12种情况,
    所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为.
    【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.
    20. (2017湖北随州)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.

    请根据图中信息,解答下列问题:
    (1)参加初赛的选手共有 40 名,请补全频数分布直方图;
    (2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?
    (3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.
    【考点】X6:列表法与树状图法;V8:频数(率)分布直方图;VB:扇形统计图.
    【分析】(1)用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B组所占百分比得到B组人数,从而补全频数分布直方图;
    (2)用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E组人数占参赛选手的百分比;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.
    【解答】解:(1)参加初赛的选手共有:8÷20%=40(人),
    B组有:40×25%=10(人).
    频数分布直方图补充如下:

    故答案为40;
    (2)C组对应的圆心角度数是:360°×=108°,
    E组人数占参赛选手的百分比是:×100%=15%;
    (3)画树状图得:

    ∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,
    ∴抽取的两人恰好是一男生和一女生的概率为=.





    相关学案

    备战中考初中数学导练学案50讲—第48讲 尺规作图(讲练版): 这是一份备战中考初中数学导练学案50讲—第48讲 尺规作图(讲练版),共29页。学案主要包含了疑难点拨等内容,欢迎下载使用。

    备战中考初中数学导练学案50讲—第40讲动态问题(讲练版): 这是一份备战中考初中数学导练学案50讲—第40讲动态问题(讲练版),共43页。学案主要包含了疑难点拨,参考答案等内容,欢迎下载使用。

    备战中考初中数学导练学案50讲—第24讲菱形(讲练版): 这是一份备战中考初中数学导练学案50讲—第24讲菱形(讲练版),共33页。学案主要包含了疑难点拨等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        备战中考初中数学导练学案50讲—第15讲概率(讲练版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map