- 压轴专题14用函数的思想看图形的最值问题16题 试卷 3 次下载
- 压轴专题14用函数的思想看图形的最值问题答案解析 试卷 3 次下载
- 压轴专题15最短路径问题答案解析 试卷 3 次下载
- 压轴专题16函数动点问题中三角形存在性17题9页 试卷 2 次下载
- 压轴专题16函数动点问题中三角形存在性答案解析 试卷 3 次下载
压轴专题15最短路径问题
展开专题15最短路径问题
模型一. 两点之间,线段最短
模型二. “将军饮马”
模型三. 双动点
模型四. 垂线段最短
1.如图,已知一次函数y=x+2的图象与x轴、y轴交于点A、C,与反比例函数y=的图象在第一象限内交于点P,过点P作PB⊥x轴,垂足为B,且△ABP的面积为9.
(1)点A的坐标为 ,点C的坐标为 ,点P的坐标为 ;
(2)已知点Q在反比例函数y=的图象上,其横坐标为6,在x轴上确定一点M,是的△PQM的周长最小,求出点M的坐标.
2.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.
(1)求抛物线的解析式;
(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;
(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.
3.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.
(1)问题发现
如图1,△CDE的形状是 三角形.
(2)探究证明
如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
图1 图2
4.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.
(1)填空:抛物线的解析式为 ,点C的坐标 ;
(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标;
(3)如图2,当点P位于抛物线的对称轴的右侧,若将△APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标.
图1 图2
5.如图,直线y=﹣x+5与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,C两点,已知点D的坐标为(0,3)
(1)求抛物线的解析式;
(2)点M,N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标.
6.已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),C(m,6)为反比例函数图象上一点.将△AOB绕B点旋转至△A′O′B处.
(1)求m的值;
(2)求当AO′最短和最长时A′点的坐标.
7.如图,⊙O的半径为2,点O到直线l距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为( )
A. B. C.2 D.3
8.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 .
9.在平面直角坐标系中,抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图,抛物线的顶点为E,EF⊥x轴于F,N是直线EF上一动点,M(m,0)是x轴上一个动点,请直接写出CN+MN+MB的最小值.
10.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;
(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出△ANM周长的最小值;若不存在,请说明理由.
11.如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求抛物线的解析式;
(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;
(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.
12.如图,在平面直角坐标系中,抛物线y=与x轴交于A,C(A在C的左侧),点B在抛物线上,其横坐标为1,连接BC,BO,点F为OB中点.
(1)求直线BC的函数表达式;
(2)若点D为抛物线第四象限上的一个动点,连接BD,CD,点E为x轴上一动点,当△BCD的面积的最大时,求点D的坐标,及|FE﹣DE|的最大值.
13.反比例函数(k为常数,且k≠0)的图象经过点A(1,3),B(3,m).
(1)求反比例函数的解析式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
人教版八年级上册13.4课题学习 最短路径问题精练: 这是一份人教版八年级上册13.4课题学习 最短路径问题精练,文件包含八年级数学上册专题10最短路径问题原卷版docx、八年级数学上册专题10最短路径问题解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
中考几何模型压轴题 专题15《角含半角模型》: 这是一份中考几何模型压轴题 专题15《角含半角模型》,共9页。
中考数学压轴题--二次函数--专题15 存在性-矩形: 这是一份中考数学压轴题--二次函数--专题15 存在性-矩形,文件包含专题15存在性-矩形解析版doc、专题15存在性-矩形原卷版doc等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。