2022年山东省威海市中考模拟数学试题二(word版含答案)
展开2022年山东省威海市中考模拟数学试题二
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.﹣5的倒数是( )
A.﹣5 B.5 C. D.
2.甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数,则下列说法中正确的是( )
A.甲和乙左视图相同,主视图相同 B.甲和乙左视图不相同,主视图不相同
C.甲和乙左视图相同,主视图不相同 D.甲和乙左视图不相同,主视图相同
3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为( )
A. B. C. D.
4.下列运算正确的是( )
A. B.
C. D.
5.计算÷(a+1﹣)的结果是( )
A. B.
C. D.
6.在同一直角坐标系中,函数与的大致图象是( )
A.①② B.②③ C.②④ D.③④
7.2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:
下列判断正确的是( )
A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍
B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍
C.单独生产A型帐篷与单独生产D型帐篷的天数相等
D.每天单独生产C型帐篷的数量最多
8.如图,在平面直角坐标系中,菱形的边轴,垂足为,顶点在第二象限,顶点在轴正半轴上,反比例函数的图象同时经过顶点.若点的横坐标为5,,则的值为( )
A. B. C. D.
9.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为( )
A.3 B. C.2 D.
10.二次函数的图象如图所示,有下列结论:①,②,③,④,正确的有( )
A.1个 B.2个 C.3个 D.4个
11.如图,点在矩形的对角线所在的直线上,,则四边形是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
12.在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:(其中R为ABC的外接圆半径)成立.在ABC中,若∠A=75°,∠B=45°,c=4,则ABC的外接圆面积为( )
A. B. C. D.
二、填空题
13.已知:,,则_____________.
14.对于任意实数a、b,定义一种运算:,若,则x的值为________.
15.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | 3 | 4 | 3 | 0 | … |
则这条抛物线的解析式为_______.
16.如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,顶点B,C在第一象限,顶点D的坐标. 反比例函数(常数,)的图象恰好经过正方形ABCD的两个顶点,则k的值是_______.
17.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆,从木杆的顶端B观察井水水岸D,视线与井口的直径交于点E,如果测得米,米,米,那么为____________米.
18.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.
三、解答题
19.解不等式组:,并将解集在数轴上表示出来.
20.“30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五•一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用A、B两种客房一天,供当天使用.下面是有关信息:
请根据上述信息,分别求今年5月1日该旅行社租用的A、B两种客房每间客房的租金.
21.随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场两点之间的距离.如图所示,小星站在广场的处遥控无人机,无人机在处距离地面的飞行高度是,此时从无人机测得广场处的俯角为,他抬头仰视无人机时,仰角为,若小星的身高(点在同一平面内).
(1)求仰角的正弦值;
(2)求两点之间的距离(结果精确到).
22.如图,已知ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若BF=10,EF=20,求⊙O的半径和AD的长.
23.一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
24.如图,抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,顶点为D,点B的坐标为(3,0).
(1)填空:点A的坐标为______,点D的坐标为______,抛物线的解析式为______.
(2)当二次函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为,求m的值;
25.已知在ABC中,O为BC边的中点,连接AO,将AOC绕点O顺时针方向旋转(旋转角为钝角),得到EOF,连接AE,CF.
(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是 ;
(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.
参考答案:
1.D
2.D
3.D
4.D
5.A
6.B
7.C
8.A
9.A
10.C
11.A
12.A
13.2
14.或2
15.
16.5或22.5
17.3
18.2n+1
19.,数轴见解析
20.租用的B种客房每间客房的租金为160元,则租用的A种客房每间客房的租金为200元
21.(1);(2)B,C两点之间的距离约为51m.
22.(1)见解析
(2)15,
23.(1)1个;(2)
24.(1)(1,0),(2,-1),;(2)m的值为或.
25.(1);(2)成立,证明见解析;(3)
2023年山东省威海市中考数学试题(图片版): 这是一份2023年山东省威海市中考数学试题(图片版),共6页。
2022年山东省威海市中考数学冲刺押题试卷(二)(word版含答案): 这是一份2022年山东省威海市中考数学冲刺押题试卷(二)(word版含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年山东省威海市文登区中考一模数学试题(word版无答案): 这是一份2022年山东省威海市文登区中考一模数学试题(word版无答案),共6页。试卷主要包含了选择题,填空题,解笞题等内容,欢迎下载使用。