所属成套资源:2022年中考数学一轮复习知识点课标要求
专题训练8:二元一次方程组-2022年中考数学一轮复习知识点课标要求
展开
2022年中考数学一轮复习知识点课标要求专题训练8:二元一次方程组(含答案)一、知识要点:1、定义定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程。定义2:把两个方程合在一起,就组成了方程组。定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。2、解二元一次方程组的方法①代入消元法;②加减消元法。代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。3、方程(组)与实际问题解有关二元一次方程(组)的实际问题的一般步骤:第1步:审题。认真读题,分析题中各个量之间的关系。第2步:设未知数。根据题意及各个量的关系设未知数。第3步:列二元一次方程(组)。根据题中各个量的关系列出方程(组)。第4步:解方程(组)。根据方程(组)的类型采用相应的解法。第5步:答。二、课标要求:1、理解二元一次方程及其解的意义,能求出二元一次方程的特殊解。2、掌握代入消元法和加减消元法,能解二元一次方程组。三、常见考点:1、二元一次方程(组)与方程(组)的解,解一次方程(组)。2、应用二元一次一次方程(组)解决实际问题。3、应用二元一次一次方程(组)解决相关综合问题。四、专题训练:1.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近( )A.21cm B.22cm C.23cm D.24cm2.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地( )A.120km B.140km C.160km D.180km3.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A.2种 B.3种 C.4种 D.5种4.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?( )A.360 B.480 C.600 D.7205.已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④若x≤1,则1≤y≤4.其中正确的是( )A.①② B.②③ C.②③④ D.①③④6.若|3x﹣2y﹣1|+=0,则x,y的值为( )A. B. C. D. 7.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )A. B. C. D.8.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )A.B.C.D.9.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 .10.已知a、b满足方程组,则= .11.方程组的解是 .12.若a﹣3b=2,3a﹣b=6,则b﹣a的值为 .13.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为 .14.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组 . 15.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为 只,树为 棵.16.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需 元.17.已知关于x,y的方程组的解为,求m,n的值. 18.用消元法解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3.解法二:由②,得3x+(x﹣3y)=2,③把①代入③,得3x+5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“ד.(2)请选择一种你喜欢的方法,完成解答. 19.解方程组: 20.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?21.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人? 22.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解. 23.在等式y=ax2+bx+c中,当x=﹣2时,y=﹣1;x=0时,y=2;x=2时,y=0.求a、b、c的值.
参考答案1.解:设多摞一个碗,增高kcm,一个碗的高度是bcm由题意得,,解得:,则11只饭碗摞起来的高度为:×10+=23(cm).更接近23cm.故选:C.2.解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.或者:设AC=ykm即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C回到A.从A到C,甲、乙两车都行驶了AC,即乙车行驶ykm,也即甲车注入燃料量可行驶ykm,注入后甲车剩余油量可行驶ykm(刚好返回A地),所以对于甲车,y+y+y=210,所以y=70.从乙车角度,从C出发是满燃料,所以AB为:105+70÷2=140(km).故选:B.3.解:设小虎足球队胜了x场,平了y场,负了z场,踢平场数是所负场数的k倍,依题意得,把③代入①②得,解得z=(k为整数).又∵z为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种情况.故选:B.4.解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).故选:C.5.解:解方程组,得,∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4,①不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x,y的值互为相反数,结论正确;③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a两边相等,结论正确;④当x≤1时,1+2a≤1,解得a≤0,且﹣3≤a≤1,∴﹣3≤a≤0∴1≤1﹣a≤4∴1≤y≤4结论正确,故选:C.6.解:由题意可知:解得:故选:D.7.解:可根据所用时间和所走的路程和得到相应的方程组为:故选:B.8.解:设绳长x尺,木长为y尺,依题意得,故选:B.9.解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)﹣6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45(元),乙种粗粮每袋成本价为6+2×27=60(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,=.故答案为:.10.解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,则原式=3.故答案为:311.解:解方程组,由①得:x=2﹣2y③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.12.解:由题意知,①+②,得:4a﹣4b=8,则a﹣b=2,∴b﹣a=﹣2,故答案为:﹣2.13.解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.14.解:设大、小和尚各有x,y人,则可以列方程组:.故答案为:.15.解:可设鸦有x只,树y棵.则,解得.答:鸦有20只,树有5棵.16.解:因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元.所以买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.答:买4支圆珠笔、4本日记本需12元.17.解:将代入方程组中得:,解得:.18.解:(1)解法一中的解题过程有错误,由①﹣②,得3x=3“×”,应为由①﹣②,得﹣3x=3;(2)由①﹣②,得﹣3x=3,解得x=﹣1,把x=﹣1代入①,得﹣1﹣3y=5,解得y=﹣2.故原方程组的解是.19.解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.20.解:(1)设参观历史博物馆的有x人,参观民俗展览馆的有y人,依题意,得,解得.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000﹣150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.21.解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.22.解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.23.解:把x=﹣2时,y=﹣1;x=0时,y=2;x=2时,y=0代入等式y=ax2+bx+c得,,解得.答:a、b、c的值分别为﹣,,2