2022年四川省眉山市仁寿县九校联考数学试题(word版无答案)
展开姓名: 分数:
满分150分 时间120分钟
一.选择题(本大题共12个小题,每小题4分,共48分.)
1.-8的绝对值为( )
A.8 B.-8 C. D.
2.将7760000用科学记数法表示为( )
×105 ×106 C.77.6×106 ×107
3.计算的结果是( )
A. B. C. D.
4.下列各式正确的是( )
A.2a2+3a2=5a4B.a2•a=a3
C.(a2)3=a5D.=a
5.不等式1﹣x≥x﹣1的解集是( )
A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1
6.某班40名同学一周参加体育锻炼时间统计如表所示:
那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
A.17,8.5B.17,9C.8,9D.8,8.5
7.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=( )
A. ab2B. a+b2C. a2b3D. a2+b3
8.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )
A. 3种B. 4种C. 5种D. 6种
9.一次函数y=ax+b与反比例函数的图象如图所示,则二次函数y=ax²+bx+c的大致图象是( )
10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为( )(参考数据:sin48°≈0.73,cs48°≈0.67,tan48°≈1.11)
A.17.0米B.21.9米C.23.3米D.33.3米
11.如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是( )
A. m≥1B. m≤0C. 0≤m≤1D. m≥1或m≤0
12.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为( )
A.B.C.D.
二、填空题(共6个小题,每小题4分,共24分)
13.方程组的解是 .
14.分解因式
15.方程+=1的解是 .
16.如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是 .
17.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为______km/h.
18.某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为 .
三、解答题:(本大题7个小题,共78分)
19.(8分)计算:
(1)(x+y)2﹣y(2x+y) (2)(a+)÷
20.(8分)某市气象局统计了5月1日至8日中午12时的气温(单位:℃),整理后分别绘制成如下图所示的两幅统计图.
根据图中给出的信息,解答下列问题:
(1)该市5月1日至8日中午时气温的平均数是℃,中位数是℃
(2)求扇形统计图中扇形A的圆心角的度数;
(3)现从该市5月1日至5日的5天中,随机抽取2天,求恰好抽到2天中午12时的气温均低于20℃的概率.
21.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;求证:FB=FE.
22.(10分)(2)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.
(1)求甲、乙两种客房每间现有定价分别是多少元?
(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?
23.(10分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.
24.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.
(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.
(2)若AE=BN,AN=CE,求证:AD=CM+2CE.
25.(10分)如图,AB是⊙O的直径,点C为BD的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.
(1)求证:△BFG≌△CDG;
(2)若AD=BE=2,求BF的长.
26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.
(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;
(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.
人数(人)
3
17
13
7
时间(小时)
7
8
9
10
四川省眉山市仁寿县2023-2024学年九年级上学期期末数学试题(含答案): 这是一份四川省眉山市仁寿县2023-2024学年九年级上学期期末数学试题(含答案),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
37,四川省眉山市仁寿县鳌峰初级中学2023-2024学年九年级上学期12月月考数学试题(无答案): 这是一份37,四川省眉山市仁寿县鳌峰初级中学2023-2024学年九年级上学期12月月考数学试题(无答案),共4页。试卷主要包含了12等内容,欢迎下载使用。
2022年四川省眉山市仁寿县九年级中考诊断性联考数学试题(含答案): 这是一份2022年四川省眉山市仁寿县九年级中考诊断性联考数学试题(含答案),共8页。