- 中考数学综合练习题63 试卷 0 次下载
- 中考数学综合练习题64 试卷 0 次下载
- 中考数学综合练习题66 试卷 0 次下载
- 中考数学综合练习题67 试卷 0 次下载
- 中考数学综合练习题68 试卷 0 次下载
中考数学综合练习题65
展开1.的倒数是( )
A.﹣B.C.2016D.﹣2016
2.等腰三角形有一个角是90°,则另两个角分别是( )
A.30°,60°B.45°,45°C.45°,90°D.20°,70°
3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于( )
A.y轴对称B.x轴对称C.原点对称D.直线y=x对称
4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是( )
A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km2
5.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是( )
A.B.C.D.
6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则( )
A.AB∥BCB.BC∥CDC.AB∥DCD.AB与CD相交
7.一个长方体的三视图如图所示,则这个长方体的体积为( )
A.30B.15C.45D.20
8.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为( )
A.πB.πC.πD.2π
9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是( )
A.B.C.D.
10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠( )
A.东风B.百惠C.两家一样D.不能确定
二、填空题:每小题3分,共18分
11.分解因式:4x2﹣4xy+y2= .
12.数据499,500,501,500的中位数是 .
13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是 .
14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是 (填序号)
15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于 cm.
16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转 周,时针和分针第一次相遇.
三、解答题:共102分
17.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.
18.化简:÷并任选一个你认为合理的正整数代入求值.
19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).
(1)以(0,0)为圆心,3为半径画圆;
(2)以(0,﹣1)为圆心,1为半径向下画半圆;
(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;
(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.
(向上、向下指在经过圆心的水平线的上方和下方)
20.下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).
回答下列问题:
(1)分别求出慧慧和聪聪成绩的平均数;
(2)分别计算慧慧和聪聪两组数据的方差;
(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;
(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.
21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)
22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.
(1)求圆的半径及圆心P的坐标;
(2)M为劣弧的中点,求证:AM是∠OAB的平分线;
(3)连接BM并延长交y轴于点N,求N,M点的坐标.
24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).
(1)求反比例函数与一次函数的解析式及B点坐标;
(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.
25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.
(1)求证:△ABP∽△QEA;
(2)当运动时间t为何值时,△ABP≌△QEA;
(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)
26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).
(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;
(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;
(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.
参考答案
一、选择题:每小题3分,共30分
1.的倒数是( )
A.﹣B.C.2016D.﹣2016
【考点】倒数.
【分析】根据倒数的定义,即可解答.
【解答】解:的倒数是2016.
故选:C.
2.等腰三角形有一个角是90°,则另两个角分别是( )
A.30°,60°B.45°,45°C.45°,90°D.20°,70°
【考点】等腰三角形的性质.
【分析】由于等腰三角形的两底角相等,所以90°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.
【解答】解:∵等腰三角形的两底角相等,
∴两底角的和为180°﹣90°=90°,
∴两个底角分别为45°,45°,
故选B.
3.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于( )
A.y轴对称B.x轴对称C.原点对称D.直线y=x对称
【考点】关于x轴、y轴对称的点的坐标.
【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.
【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.
故选:B.
4.中国的领水面积约为370000km2,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是( )
A.37×105km2B.37×104km2C.0.85×105km2D.1.85×105km2
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:370000×=185000=1.85×105,
故选D.
5.从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是( )
A.B.C.D.
【考点】列表法与树状图法.
【分析】先画树状图展示所有9种等可能的结果数,再找出组成的数是偶数的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
共有6种等可能的结果数,其中组成的数是偶数的结果数为4,
所以组成的数是偶数的概率==.
故选A.
6.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则( )
A.AB∥BCB.BC∥CDC.AB∥DCD.AB与CD相交
【考点】平行线的判定.
【分析】根据同旁内角互补,两直线平行即可求解.
【解答】解:∵∠ABC=150°,∠BCD=30°,
∴∠ABC+∠BCD=180°,
∴AB∥DC.
故选:C.
7.一个长方体的三视图如图所示,则这个长方体的体积为( )
A.30B.15C.45D.20
【考点】由三视图判断几何体.
【分析】易得该长方体长为3,宽为2,高为5,根据长方体的体积=长×宽×高列式计算即可求解.
【解答】解:观察图形可知,该几何体为长3,宽2,高5的长方体,
长方体的体积为3×2×5=30.
故选:A.
8.如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为( )
A.πB.πC.πD.2π
【考点】圆的认识.
【分析】将下面阴影部分进行对称平移,根据半圆的面积公式列式计算即可求解.
【解答】解:π×12×
=π×1×
=π.
答:图中阴影部分的面积为π.
故选:B.
9.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是( )
A.B.C.D.
【考点】二次函数的图象;一次函数的图象;反比例函数的图象.
【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论.
【解答】解:一次函数y=k(x﹣k)=kx﹣k2,
∵k≠0,
∴﹣k2<0,
∴一次函数与y轴的交点在y轴负半轴.
A、一次函数图象与y轴交点在y轴正半轴,A不正确;
B、一次函数图象与y轴交点在y轴正半轴,B不正确;
C、一次函数图象与y轴交点在y轴负半轴,C可以;
D、一次函数图象与y轴交点在y轴正半轴,D不正确.
故选C.
10.8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠( )
A.东风B.百惠C.两家一样D.不能确定
【考点】一元一次方程的应用.
【分析】分析:本题可以直接求出郝爱在两家书店购买学习用品或工具书的钱数,比较一下便可得到答案.
【解答】解:依题意,
若在东风书店购买,需花费:60+×50%=180(元),
若在百惠书店购买,需花费:50+×60%=200(元).
∵180<200
∴郝爱同学在东风书店购买学习用品或工具书便宜.
故选:A
二、填空题:每小题3分,共18分
11.分解因式:4x2﹣4xy+y2= (2x﹣y)2 .
【考点】因式分解-运用公式法.
【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.
【解答】解:4x2﹣4xy+y2,
=(2x)2﹣2×2x•y+y2,
=(2x﹣y)2.
12.数据499,500,501,500的中位数是 500 .
【考点】中位数.
【分析】先将题中的数据按照从小到大的顺序排列,再根据中位数的概念解答即可.
【解答】解:将该组数据按照从小到大的顺序排列为:499,500,500,501,
可得改组数据的中位数为: =500,
故答案为:500.
13.如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是 8cm .
【考点】切线的性质.
【分析】根据切线的性质以及垂径定理,在Rt△BOC中利用勾股定理求出BC,即可得出AB的长.
【解答】解:∵AB是⊙O切线,
∴OC⊥AB,
∴AC=BC,
在Rt△BOC中,∵∠BCO=90°,OB=5,OC=3,
∴BC==4(cm),
∴AB=2BC=8cm.
故答案为:8cm.
14.下列图表是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是 ①②③④ (填序号)
【考点】轴对称图形.
【分析】结合图象根据轴对称图形的概念解答即可.
【解答】解:根据轴对称图形的概念,可得出①②③④均为轴对称图形.
故答案为:①②③④.
15.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于 或 cm.
【考点】正方形的性质;全等三角形的判定与性质;勾股定理.
【分析】如图,作DH∥MN,先证明△ADH≌△BAE推出MN⊥AE,在RT△AFM中求出AM即可,再根据对称性求出AM′,由此即可解决问题.
【解答】解:如图,作DH∥MN,
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠B=90°,AB∥CD,
∴四边形DHMN是平行四边形,
∴DH=MN=AE,
在RT△ADH和RT△BAE中,
,
∴△ADH≌△BAE,
∴∠ADH=∠BAE,
∴∠ADH+∠AHD=∠ADH+∠AMN=90°,
∴∠BAE+∠AMN=90°,
∴∠AFM=90°,
在RT△ABE中,∵∠B=90°,AB=,∠BAE=30°,
∴AE•cs30°=AB,
∴AE=2,
在RT△AFM中,∵∠AFM=90°,AF=1,∠FAM=30°,
∴AM•cs30°=AF,
∴AM=,
根据对称性当M′N′=AE时,BM′=,AM′
故答案为或.
16.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转 周,时针和分针第一次相遇.
【考点】一元一次方程的应用.
【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.
【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,
根据题意可得:60x=720(x﹣1),
解得:x=.
故答案为:.
三、解答题:共102分
17.计算:(﹣)﹣1+3tan30°﹣+(﹣1)2016.
【考点】实数的运算;负整数指数幂;特殊角的三角函数值.
【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣)﹣1+3tan30°﹣+(﹣1)2016的值是多少即可.
【解答】解:(﹣)﹣1+3tan30°﹣+(﹣1)2016
=﹣3+3×﹣3+1
=﹣3+﹣3+1
=﹣2﹣2
18.化简:÷并任选一个你认为合理的正整数代入求值.
【考点】分式的化简求值.
【分析】根据分式的除法法则把原式进行化简,再选取合适的a的值代入进行计算即可.
【解答】解:原式=÷
=×
=﹣,
当a=1时,原式=﹣
19.在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).
(1)以(0,0)为圆心,3为半径画圆;
(2)以(0,﹣1)为圆心,1为半径向下画半圆;
(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;
(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.
(向上、向下指在经过圆心的水平线的上方和下方)
【考点】作图—复杂作图.
【分析】(1)直接利用坐标系结合圆心的位置以及半径长画出圆即可;
(2)直接利用坐标系结合圆心的位置以及半径长画出半圆即可;
(3)直接利用坐标系结合圆心的位置以及半径长画出圆即可;
(4)直接利用坐标系结合圆心的位置以及半径长画出半圆即可.
【解答】解:(1)如图所示:⊙O,即为所求;
(2)如图所示:半圆O1,即为所求;
(3)如图所示:⊙O2,⊙O3,即为所求;
(4)如图所示:半圆O2,半圆O3,即为所求.
20.下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).
回答下列问题:
(1)分别求出慧慧和聪聪成绩的平均数;
(2)分别计算慧慧和聪聪两组数据的方差;
(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;
(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.
【考点】列表法与树状图法;算术平均数;方差.
【分析】(1)把慧慧和聪聪的成绩都减去125,然后计算她们的平均成绩;
(2)根据方差公式计算两组数据的方差;
(3)根据平均数的大小和方差的意义进行判断;
(4)画树状图展示所有6种等可能的结果数,再找出两名学生分别在初三•二班和初三•三班的结果数,然后根据概率公式计算.
【解答】解:(1)慧慧的平均分数=125+(﹣9﹣1+5+1+6+2+1﹣3+0﹣2)=125(分),
聪聪的平均分数=125+(﹣3﹣1+0+3﹣6﹣5+6+3﹣11﹣6)=123(分);
(2)慧慧成绩的方差 S2= [92+12+52+12+42+22+12+32+02+22]=14.2,
聪聪成绩的方差S2= [12+12+22+52+42+32+82+52+92+42]=24.2,
(3)根据(1)可知慧慧的平均成绩要好于聪聪,根据(2)可知慧慧的方差小于聪聪的方差,因为方差越小越稳定,所以慧慧的成绩比聪聪的稳定,因此选慧慧参加全国数学竞赛更合适一些.
(4)画树状图为:
共有6种等可能的结果数,其中两名学生分别在初三•二班和初三•三班的结果数为2,
所以两名学生分别在初三•二班和初三•三班的概率==.
21.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查,一测量船在A岛测得B岛在北偏西30°,C岛在北偏东15°,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离(≈2.45,结果保留到整数)
【考点】解直角三角形的应用-方向角问题.
【分析】过点B作BD⊥AC于点D,由等腰直角三角形的性质求出AD的长,再由直角三角形的性质即可得出结论.
【解答】解:由题意知:∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里;
过B点作BD⊥AC于点D,
∵∠BAC=45°,
∴△BAD为等腰直角三角形;
∴BD=AD=50,∠ABD=45°;
∴∠CBD=180°﹣30°﹣45°﹣45°=60°,
∴∠C=30°;
∴在Rt△BCD中BC=100≈141海里,CD=50,
∴AC=AD+CD=50+50≈193海里.
22.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
【考点】一元二次方程的应用.
【分析】(1)设条纹的宽度为x米,根据等量关系:配色条纹所占面积=整个地毯面积的,列出方程求解即可;
(2)根据总价=单价×数量,可分别求出地毯配色条纹和其余部分的钱数,再相加即可求解.
【解答】解:(1)设条纹的宽度为x米.依题意得
2x×5+2x×4﹣4x2=×5×4,
解得:x1=(不符合,舍去),x2=.
答:配色条纹宽度为米.
(2)条纹造价:×5×4×200=850(元)
其余部分造价:(1﹣)×4×5×100=1575(元)
∴总造价为:850+1575=2425(元)
答:地毯的总造价是2425元.
23.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.
(1)求圆的半径及圆心P的坐标;
(2)M为劣弧的中点,求证:AM是∠OAB的平分线;
(3)连接BM并延长交y轴于点N,求N,M点的坐标.
【考点】圆的综合题.
【分析】(1)先利用勾股定理计算出AB=10,再利用圆周角定理的推理可判断AB为⊙P的直径,则得到⊙P的半径是5,然后利用线段的中点坐标公式得到P点坐标;
(2)根据圆周角定理由=,∠OAM=∠MAB,于是可判断AM为∠OAB的平分线;
(3)连接PM交OB于点Q,如图,先利用垂径定理的推论得到PM⊥OB,BQ=OQ=OB=4,再利用勾股定理计算出PQ=3,则MQ=2,于是可写出M点坐标,接着证明MQ为△BON的中位线得到ON=2MQ=4,然后写出N点的坐标.
【解答】解:(1)∵O(0,0),A(0,﹣6),B(8,0),
∴OA=6,OB=8,
∴AB==10,
∵∠AOB=90°,
∴AB为⊙P的直径,
∴⊙P的半径是5
∵点P为AB的中点,
∴P(4,﹣3);
(2)∵M点是劣弧OB的中点,
∴=,
∴∠OAM=∠MAB,
∴AM为∠OAB的平分线;
(3)连接PM交OB于点Q,如图,
∵=,
∴PM⊥OB,BQ=OQ=OB=4,
在Rt△PBQ中,PQ===3,
∴MQ=2,
∴M点的坐标为(4,2);
∵MQ∥ON,
而OQ=BQ,
∴MQ为△BON的中位线,
∴ON=2MQ=4,
∴N点的坐标为(0,4).
24.如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x﹣2)的图象交点为A(3,2),B(x,y).
(1)求反比例函数与一次函数的解析式及B点坐标;
(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)根据点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上列出m和k的一元一次方程,求出k和m的值即可;联立两函数解析式,求出交点坐标;
(2)设C点的坐标为(0,yc),求出点M的坐标,再根据△ABC的面积为10,知×3×|yc﹣(﹣4)|+×1×|yc﹣(﹣4)|=10,求出yC的值即可.
【解答】解:(1)∵点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上;
∴2=,2=k(3﹣2),解得m=6,k=2;
∴反比例函数解析式为y=,和一次函数解析式为y=2x﹣4;
∵点B是一次函数与反比例函数的另一个交点,
∴=2x﹣4,解得x1=3,x2=﹣1;
∴B点的坐标为(﹣1,6);
(2)∵点M是一次函数y=2x﹣4与y轴的交点,
∴点M的坐标为(0,﹣4),
设C点的坐标为(0,yc),由题意知×3×|yc﹣(﹣4)|+×1×|yc﹣(﹣4)|=10,
解得|yc+4|=5,
当yc+4≥0时,yc+4=5,解得Yc=1,
当yc+4≤0时,yc+4=﹣5,解得Yc=﹣9,
∴点C的坐标为(0,1)或(0,﹣9).
25.如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.
(1)求证:△ABP∽△QEA;
(2)当运动时间t为何值时,△ABP≌△QEA;
(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)
【考点】相似形综合题.
【分析】(1)根据正方形的性质和相似三角形的判定和性质证明即可;
(2)根据全等三角形的判定和性质,利用勾股定理解答即可;
(3)根据相似三角形的性质得出函数解析式即可.
【解答】(1)证明:∵四边形ABCD为正方形;
∴∠BAP+∠QAE=∠B=90°,
∵QE⊥AP;
∴∠QAE+∠EQA=∠AEQ=90°
∴∠BAP=∠EQA,∠B=∠AEQ;
∴△ABP∽△QEA(AA)
(2)∵△ABP≌△QEA;
∴AP=AQ(全等三角形的对应边相等);
在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2
即32+t2=(2t)2
解得t1=,t2=﹣(不符合题意,舍去)
答:当t取时△ABP与△QEA全等.
(3)由(1)知△ABP∽△QEA;
∴=()2
∴=()2
整理得:y=.
26.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).
(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;
(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;
(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.
【考点】二次函数综合题.
【分析】(1)利用抛物线和x轴的两个交点坐标,设出抛物线的解析式y=a(x﹣x1)(x﹣x2),代入即可得出抛物线的解析式,再设出直线AC的解析式,利用待定系数法即可得出答案;
(2)先求得抛物线的顶点D的坐标,再设点P坐标(0,Py),根据A,B,D三点在⊙P上,得PB=PD,列出关于Py的方程,求解即可得出P点的坐标;
(3)假设抛物线上存在这样的点Q使直线AQ与⊙P相切,设Q点的坐标为(m,m2﹣4),根据平面内两点间的距离公式,即可得出关于m的方程,求出m的值,即可得出点Q的坐标.
【解答】解:(1)∵A(﹣2,0),B(2,0);
∴设二次函数的解析式为y=a(x﹣2)(x+2)…①,
把C(3,5)代入①得a=1;
∴二次函数的解析式为:y=x2﹣4;
设一次函数的解析式为:y=kx+b(k≠0)…②
把A(﹣2,0),C(3,5)代入②得,
解得,
∴一次函数的解析式为:y=x+2;
(2)设P点的坐标为(0,Py),
由(1)知D点的坐标为(0,﹣4);
∵A,B,D三点在⊙P上;
∴PB=PD;
∴22+Py2=(﹣4﹣Py)2,
解得:Py=﹣;
∴P点的坐标为(0,﹣);
(3)在抛物线上存在这样的点Q使直线AQ与⊙P相切.
理由如下:设Q点的坐标为(m,m2﹣4);
根据平面内两点间的距离公式得:AQ2=(m+2)2+(m2﹣4)2,PQ2=m2+(m2﹣4+)2;
∵AP=,
∴AP2=;
∵直线AQ是⊙P的切线,
∴AP⊥AQ;
∴PQ2=AP2+AQ2,
即:m2+(m2﹣4+)2=+[(m+2)2+(m2﹣4)2]
解得:m1=,m2=﹣2(与A点重合,舍去)
∴Q点的坐标为(,).
慧慧
116
124
130
126
121
127
126
122
125
123
聪聪
122
124
125
128
119
120
121
128
114
119
慧慧
116
124
130
126
121
127
126
122
125
123
聪聪
122
124
125
128
119
120
121
128
114
119
中考数学综合练习题50: 这是一份中考数学综合练习题50,共8页。试卷主要包含了填空题;,选择题,解答题;等内容,欢迎下载使用。
中考数学综合练习题69: 这是一份中考数学综合练习题69,共14页。试卷主要包含了填空题,选择题等内容,欢迎下载使用。
中考数学综合练习题16: 这是一份中考数学综合练习题16,共9页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。