高考数学(理数)一轮复习检测卷:8.8《曲线与方程》 (学生版)
展开限时规范训练(限时练·夯基练·提能练)
A级 基础夯实练
1.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为( )
A.x2+y2=2 B.x2+y2=4
C.x2+y2=2(x≠±) D.x2+y2=4(x≠±2)
2.已知θ是△ABC的一个内角,且sin θ+cos θ=,则方程x2sin θ-y2cos θ=1表示( )
A.焦点在x轴上的双曲线
B.焦点在y轴上的双曲线
C.焦点在x轴上的椭圆
D.焦点在y轴上的椭圆
3.已知F1,F2是双曲线的两个焦点,Q是双曲线上任意一点,从焦点F1引∠F1QF2的平分线的垂线,垂足为P,则点P的轨迹为( )
A.直线 B.圆
C.椭圆 D.双曲线
4.已知不等式3x2-y2>0所表示的平面区域内一点P(x,y)到直线y=x和直线y=-x的垂线段分别为PA,PB,若△PAB的面积为,则点P的轨迹的一个焦点坐标可以是( )
A.(2,0) B.(3,0)
C.(0,2) D.(0,3)
5.已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.
若=λ·,其中λ为常数,则动点M的轨迹不可能是( )
A.圆 B.椭圆
C.抛物线 D.双曲线
6.设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,=+,则点M的轨迹方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
7.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足向量在向量上的投影为-,则点P的轨迹方程是________.
8.在平面直角坐标系中,O为坐标原点,A(1,0),B(2,2),若点C满足=+t(-),其中t∈R,则点C的轨迹方程是________.
9.已知圆的方程为x2+y2=4,若抛物线过点A(-1,0),B(1,0)且以圆的切线为准线,则抛物线焦点的轨迹方程是________.
10.已知坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|=5|MQ|.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为C,过点N(-2,3)的直线l被C所截得的线段长度为8,求直线l的方程.
B级 能力提升练
11.若曲线C上存在点M,使M到平面内两点A(-5,0),B(5,0),距离之差的绝对值为8,则称曲线C为“好曲线”.以下曲线不是“好曲线”的是( )
A.x+y=5 B.x2+y2=9
C.+=1 D.x2=16y
12.已知正方体ABCDA1B1C1D1的棱长为1,点M在AB上,且AM=,点P在平面ABCD内,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点P的轨迹是( )
A.直线 B.圆
C.双曲线 D.抛物线
13.已知圆O的方程为x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为( )
A.-=1(x≠0) B.+=1(x≠0)
C.-=1(y≠0) D.+=1(y≠0)
14.如图,已知△ABC的两顶点坐标A(-1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.则曲线M的方程为________.
15.已知M为椭圆C:+=1上的动点,过点M作x轴的垂线,垂足为D,点P满足=.
(1)求动点P的轨迹E的方程;
(2)若A,B两点分别为椭圆C的左、右顶点,F为椭圆C的左焦点,直线PB与椭圆C交于点Q,直线QF,PA的斜率分别为kQF,kPA,求的取值范围.
高考数学(理数)一轮复习检测卷:8.5《双曲线》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:8.5《双曲线》 (学生版),共3页。试卷主要包含了当双曲线M,已知F是双曲线C,已知双曲线C,设F1,F2分别为双曲线C等内容,欢迎下载使用。
高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版),共4页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。
高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (学生版),共2页。试卷主要包含了以线段AB,已知圆C,已知点P,圆C等内容,欢迎下载使用。