高考数学(理数)一轮复习检测卷:8.5《双曲线》 (学生版)
展开限时规范训练(限时练·夯基练·提能练)
A级 基础夯实练
1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
2.当双曲线M:-=1(-2≤m<0)的焦距取得最小值时,双曲线M的渐近线方程为( )
A.y=±x B.y=±x
C.y=±2x D.y=±x
3.已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )
A. B.
C. D.
4.已知F1,F2是椭圆与双曲线的公共焦点,P是它们的一个公共点,且|PF1|>|PF2|,线段PF1的垂直平分线过F2,若椭圆的离心率为e1,双曲线的离心率为e2,则+的最小值为( )
A.6 B.3
C. D.
5.已知双曲线C:-=1(a>0,b>0)的右焦点为F,点B是虚轴的一个端点,线段BF与双曲线C的右支交于点A,若=2,且||=4,则双曲线C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
6.已知点P,A,B在双曲线-=1(a>0,b>0)上,直线AB过坐标原点,且直线PA,PB的斜率之积为,则双曲线的离心率为( )
A. B.
C.2 D.
7.已知双曲线-=1的一个焦点是(0,2),椭圆-=1的焦距等于4,则n=_____.
8.设F1,F2分别为双曲线C:-=1(a>0,b>0)的两个焦点,M,N是双曲线C的一条渐近线上的两点,四边形MF1NF2为矩形,A为双曲线的一个顶点,若△AMN的面积为c2,则该双曲线的离心率为________.
9.设P为双曲线x2-=1上的一点,F1,F2是该双曲线的左、右焦点,若△PF1F2的面积为12,则∠F1PF2=________.
10.已知F为双曲线-=1(a>0,b>0)的右焦点,过原点的直线l与双曲线交于M,N两点,且·=0,△MNF的面积为ab,则该双曲线的离心率为________.
B级 能力提升练
11.已知双曲线C:-=1(a>0,b>0)的焦距为2c,直线l过点且与双曲线C的一条渐近线垂直,以双曲线C的右焦点为圆心,半焦距为半径的圆Ω与直线l交于M,N两点,若|MN|=c,则双曲线C的渐近线方程为( )
A.y=±x B.y=±x
C.y=±2x D.y=±4x
12.已知F1,F2为双曲线-=1(a>0,b>0)的左、右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于点Q,且|PQ|=2|QF1|,则该双曲线的离心率为( )
A. B.2
C. D.
13.已知双曲线E:-=1(a>0,b>0)的左、右焦点分别为F1,F2,|F1F2|=6,P是双曲线E右支上一点,PF1与y轴交于点A,△PAF2的内切圆与AF2相切于点Q.若|AQ|=,则双曲线E的离心率是( )
A.2 B.
C. D.
14.已知抛物线C1:y2=8ax(a>0),直线l的倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2:-=1(a>0,b>0)的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是( )
A.2 B.
C. D.1
15.已知双曲线-=1,过双曲线的上焦点F1作圆O:x2+y2=25的一条切线,切点为M,交双曲线的下支于点N,T为NF1的中点,则△MOT的外接圆的周长为________.
16.如图,双曲线的中心在坐标原点O,A,C分别是双曲线虚轴的上、下端点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则∠BDF的余弦值是________.
高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版),共4页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。
高考数学(理数)一轮复习检测卷:1.1《集合》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:1.1《集合》 (学生版)
高考数学(理数)一轮复习检测卷:8.5《双曲线》 (教师版): 这是一份高考数学(理数)一轮复习检测卷:8.5《双曲线》 (教师版)