高考数学(理数)一轮复习检测卷:10.8《两点分布、超几何分布、正态分布》 (学生版)
展开限时规范训练(限时练·夯基练·提能练)
A级 基础夯实练
1.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.158 7,则P(2<X<4)=( )
A.0.682 6 B.0.341 3
C.0.460 3 D.0.920 7
2.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ),N(μ2,σ),其正态分布密度曲线如图所示,则下列说法错误的是( )
A.甲类水果的平均质量为0.4 kg
B.甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右
C.甲类水果的平均质量比乙类水果的平均质量小
D.σ2=1.99
3.已知袋中有3个白球,2个红球,现从中随机取出3个球,其中取出1个白球计1分,取出1个红球计2分,记X为取出3个球的总分值,则E(X)=( )
A. B.
C.4 D.
4.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲的及格概率为,乙的及格概率为,丙的及格概率为,则三人中至少有一人及格的概率为( )
A. B.
C. D.
5.已知随机变量X,Y满足X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
6.如图是总体的正态曲线,下列说法正确的是( )
A.组距越大,频率分布直方图的形状越接近于它
B.样本容量越小,频率分布直方图的形状越接近于它
C.阴影部分的面积代表总体在(a,b)内取值的百分比
D.阴影部分的平均高度代表总体在(a,b)内取值的百分比
7.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=,则P(η≥2)的值为( )
A. B.
C. D.
8.已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为0.683,0.955和0.997.某校为高一年级1 000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布N(165,52),则适合身高在155~175 cm范围内学生的校服大约要定制( )
A.683套 B.955套
C.972套 D.997套
9.2018年1月某校高三年级1 600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次统考中成绩不低于120分的学生人数约为( )
A.80 B.100
C.120 D.200
10.经检测,有一批产品的合格率为,现从这批产品中任取5件,记其中合格产品的件数为ξ,则P(ξ=k)取得最大值时,k的值为( )
A.5 B.4
C.3 D.2
B级 能力提升练
11.从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为Z),由测量结果得如下频率分布直方图:
(1)公司规定:当Z≥95时,产品为正品;当Z<95时,产品为次品.公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记ξ为生产一件这种产品的利润,求随机变量ξ的分布列和数学期望;
(2)由频率分布直方图可以认为,Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2(同一组中的数据用该区间的中点值作代表).
①利用该正态分布,求P(87.8<Z<112.2);
②某客户从该公司购买了500件这种产品,记X表示这500件产品中该项质量指标值位于区间(87.8,112.2)内的产品件数,利用①的结果,求E(X).
附:≈12.2.
若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 7,P(μ-2σ<Z<μ+2σ)=0.954 5.
12.某食品店为了了解气温对销售量的影响,随机记录了该店1月份其中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:℃)的数据,如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求出y与x的回归方程=x+;
(2)判断y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,请用所求回归方程预测该店当日的销售量;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2,求P(3.8<X<13.4).
附:①回归方程=x+中,=,=- .
②≈3.2,≈1.8.若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 7,
P(μ-2σ<X<μ+2σ)=0.954 5.
13.某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学期的10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.
(1)你认为选派谁参赛更合适?并说明理由.
(2)若从甲、乙两人10次的成绩中各随机抽取1次,设抽到的2次成绩中,90分以上的次数为X,求随机变量X的分布列和数学期望.
14.近日,某市举行了教师选拔考试(既有笔试又有面试),该市教育局对参加该次考试的50名教师的笔试成绩(单位:分)进行分组,得到的频率分布表如下:
组号 | 分组 | 频数 | 频率 |
第一组 | [50,60) | 5 | 0.1 |
第二组 | [60,70) | 15 | 0.3 |
第三组 | [70,80) | x | z |
第四组 | [80,90) | 10 | 0.2 |
第五组 | [90,100] | y | 0.1 |
合计 | 50 | 1.0 |
(1)求频率分布表中x,y,z的值,并补充频率分布直方图;
(2)估计参加考试的这50名教师的笔试成绩的平均数(同一组中的数据用该组区间的中点值作代表);
(3)若该市教育局决定在分数较高的第三、四、五组中任意抽取2名教师进入面试,设ξ为抽到的第五组教师的人数,求ξ的分布列及数学期望.
(新高考)高考数学一轮复习学案+巩固提升练习10.8《二项分布、超几何分布与正态分布》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+巩固提升练习10.8《二项分布、超几何分布与正态分布》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》原卷版doc、新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》教师版doc、新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》教师版pdf等4份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
(新高考)高考数学一轮复习学案+分层提升10.8《二项分布、超几何分布与正态分布》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+分层提升10.8《二项分布、超几何分布与正态分布》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》原卷版doc、新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》教师版doc、新高考高考数学一轮复习讲义+巩固练习108《二项分布超几何分布与正态分布》教师版pdf等4份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
高考数学一轮复习检测:第10章第8节 两点分布、超几何分布、正态分布 含解析: 这是一份高考数学一轮复习检测:第10章第8节 两点分布、超几何分布、正态分布 含解析,共10页。试卷主要包含了故选B.等内容,欢迎下载使用。