所属成套资源:高考数学(理数)一轮复习检测卷 (学生版)
高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版)
展开这是一份高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版),共4页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。
限时规范训练(限时练·夯基练·提能练)
A级 基础夯实练
1.已知椭圆+=1(a>b>0)的一个焦点是圆x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为( )
A.(-3,0) B.(-4,0)
C.(-10,0) D.(-5,0)
2.已知椭圆的中心在坐标原点,长轴长是8,离心率是,则此椭圆的标准方程是( )
A.+=1 B.+=1或+=1
C.+=1 D.+=1或+=1
3.设F1,F2分别为椭圆+=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则的值为( )
A. B.
C. D.
4.已知椭圆+=1(a>b>0)的右顶点和上顶点分别为A、B,左焦点为F.以原点O为圆心的圆与直线BF相切,且该圆与y轴的正半轴交于点C,过点C的直线交椭圆于M、N两点.若四边形FAMN是平行四边形,则该椭圆的离心率为( )
A. B.
C. D.
5.以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )
A. B.
C. D.
6.若椭圆+=1(a>b>0)的离心率为,短轴长为4,则椭圆的标准方程为________.
7.设F1,F2是椭圆+=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=4∶3,则△PF1F2的面积为________.
8.已知椭圆+=1(a>b>0)的左焦点为F1(-c,0),右顶点为A,上顶点为B,现过A点作直线F1B的垂线,垂足为T,若直线OT(O为坐标原点)的斜率为-,则该椭圆的离心率为________.
9.分别求出满足下列条件的椭圆的标准方程.
(1)与椭圆+=1有相同的离心率且经过点(2,-);
(2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5,3,过P且与长轴垂直的直线恰过椭圆的一个焦点.
10.已知椭圆C:+=1(a>b>0)经过点(,1),且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆上的点,直线OM与ON(O为坐标原点)的斜率之积为-.若动点P满足=+2,求点P的轨迹方程.
B级 能力提升练
11.如图,已知椭圆C的中心为原点O,F(-5,0)为C的左焦点,P为C上一点,满足|OP|=|OF|且|PF|=6,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
12.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是( )
A. B.
C. D.
13.已知P为椭圆+=1(a>b>0)上一点,F1,F2是其左、右焦点,∠F1PF2取最大值时,cos∠F1PF2=,则椭圆的离心率为________.
14.椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为________.
15.已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足=2+.
(1)求动点P的轨迹C的标准方程;
(2)直线l:x=ty+1与曲线C交于A,B两点,E(-1,0),试问:当t变化时,是否存在一条直线l,使△ABE的面积为2?若存在,求出直线l的方程;若不存在,说明理由.
16.已知椭圆C:+=1(a>b>0)的离心率为,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使·恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
C级 素养加强练
17.已知椭圆+=1(a>b>0)的一个顶点为B(0,4),离心率e=,直线l交椭圆于M,N两点.
(1)若直线l的方程为y=x-4,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.
相关试卷
这是一份高考数学(理数)一轮复习检测卷:8.5《双曲线》 (学生版),共3页。试卷主要包含了当双曲线M,已知F是双曲线C,已知双曲线C,设F1,F2分别为双曲线C等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (学生版),共2页。试卷主要包含了以线段AB,已知圆C,已知点P,圆C等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:1.1《集合》 (学生版)