高考数学(理数)一轮复习课时作业74《绝对值不等式》(原卷版)
展开课时作业74 绝对值不等式
1.已知函数f(x)=|2x-a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.
2.已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.
3.已知函数f(x)=|2x-1|+|2x+3|.
(1)解不等式f(x)≥6;
(2)记f(x)的最小值是m,正实数a,b满足2ab+a+2b=m,求a+2b的最小值.
4.已知函数f(x)=|x+1|+|x-3|.
(1)若关于x的不等式f(x)<a有解,求实数a的取值范围;
(2)若关于x的不等式f(x)<a的解集为,求a+b的值.
5.已知函数f(x)=(m∈R),g(x)=|x+1|,且不等式g+≤3的解集为[-2,3].
(1)求实数m的值;
(2)若存在实数k,使得f(k)+1≤T-f(-k)成立,求实数T的取值范围.
6.已知函数f(x)=|x+1-2a|+|x-a2|,a∈R,g(x)=x2-2x-4+.
(1)若f(2a2-1)>4|a-1|,求实数a的取值范围;
(2)若存在实数x,y,使f(x)+g(y)≤0,求实数a的取值范围.
7.已知函数f(x)=|2x-a|+|2x+1|.
(1)当a=1时,求f(x)≤2的解集;
(2)若g(x)=4x2+ax-3.当a>-1且x∈时,f(x)≥g(x),求实数a的取值范围.
8.已知函数f(x)=|x-2|.
(1)求不等式f(x)≤5-|x-1|的解集;
(2)若函数g(x)=-f(2x)-a的图象在上与x轴有3个不同的交点,求a的取值范围.
高考数学(理数)一轮复习课时作业64《排列与组合》(原卷版): 这是一份高考数学(理数)一轮复习课时作业64《排列与组合》(原卷版),共3页。
高考数学(理数)一轮复习课时作业54《双曲线》(原卷版): 这是一份高考数学(理数)一轮复习课时作业54《双曲线》(原卷版),共4页。试卷主要包含了已知F为双曲线C,已知双曲线C,已知双曲线C1,已知F1、F2为双曲线C等内容,欢迎下载使用。
高考数学(理数)一轮复习课时作业53《椭圆》(原卷版): 这是一份高考数学(理数)一轮复习课时作业53《椭圆》(原卷版),共4页。试卷主要包含了已知F1,F2是椭圆C,椭圆M等内容,欢迎下载使用。