数学第八章 整式乘法综合与测试同步训练题
展开冀教版七年级数学下册第八章整式的乘法定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、福建省教育发展基金会通过腾讯公益平台发起“关爱重度残疾儿童”公益募捐活动.首轮网上公益活动募捐计划93万元资金,重点扶持原23个省级扶贫开发工作重点县,助力重度残疾儿童少年实施送教上门工作,计划惠及860名重度残疾儿童.将数据93万用科学记数法表示为( ).A. B. C. D.
2、下列计算正确的是( )
A. B. C. D.
3、下列运算正确的是( )
A.(﹣ab2)3=﹣a3b6 B.2a+3a=5a2
C.(a+b)2 = a2+b2 D.a2•a3=a6
4、计算得( )
A. B. C. D.
5、若,则的值为( )
A. B.8 C. D.
6、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
7、下列计算正确的是( )
A. B. C. D.
8、纳米(nm)是非常小的长度单位,.1nm用科学记数法表示为( )
A. B. C. D.
9、若,则代数式的值为( )
A.6 B.8 C.12 D.16
10、下列计算正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、若a+b=﹣3,ab=1,则(a+1)(b+1)(a﹣1)(b﹣1)=_____.
2、若有意义,则实数的取值范围是 __.
3、要使成为完全平方式,那么b的值是______.
4、阅读理解:如果一个数的平方等于﹣1,记为i2=﹣1,i叫做虚数单位,我们把形如a+bi(a、b为实数,且b≠0)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.
如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;
(2﹣i)(3+i)=2×3+2i﹣3i﹣i2=6﹣i﹣(﹣1)=7﹣i.
根据以上信息,计算(3+i)(1﹣3i)=_____.
5、已知代数式 可以利用完全平方公式变形为 ,进而可知 的最小值是 .依此方法,代数式 的最小值是________________.
三、解答题(5小题,每小题10分,共计50分)
1、计算:.
2、阅读理解:
已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,
∴(a+b)2=(﹣4)2.
即a2+2ab+b2=16.
∵ab=3,
∴a2+b2=10.
参考上述过程解答:
(1)已知a﹣b=﹣3,ab=﹣2.求式子(a﹣b)(a2+b2)的值;
(2)若m﹣n﹣p=﹣10,(m﹣p)n=﹣12,求式子(m﹣p)2+n2的值.
3、计算:
(1);
(2).
4、计算:.
5、在计算时我们如果能总结规律,并加以归纳,得出数学公式,一定会提高解题的速度,在解答下面问题中请留意其中的规律.
(1)计算后填空:(x+1)(x+2)= ;(x+3)(x﹣1)= ;
(2)归纳、猜想后填空:(x+a)(x+b)=x2+ x+ ;
(3)运用(2)猜想的结论,直接写出计算结果:(x+2)(x+m)= .
-参考答案-
一、单选题
1、A
【解析】
【分析】
科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:93万=930000=9.3×105,
故选:A.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、A
【解析】
【分析】
根据整式的乘除运算法则逐个运算即可.
【详解】
解:选项A:,故选项A正确;
选项B:,故选项B错误;
选项C:,故选项C错误;
选项D:,故选项D错误;
故选:A.
【点睛】
本题考查了同底数幂的乘、除法,幂的乘方及积的乘方等,属于基础题,计算过程中细心即可.
3、A
【解析】
【分析】
分别根据积的乘方运算法则,合并同类项法则,完全平方公式以及同底数幂的乘法法则逐一判断即可.
【详解】
解:A、(-ab2)3=-a3b6,故本选项符合题意;
B、2a+3a=5a,故本选项不合题意;
C、(a+b)2=a2+2ab+b2,故本选项不合题意;
D、a2•a3=a5,故本选项不合题意;
故选:A.
【点睛】
本题主要考查了积的乘方,同底数幂的乘法,完全平方公式以及合并同类项,熟记相关公式与运算法则是解答本题的关键.
4、A
【解析】
【分析】
变形后根据完全平方公式计算即可.
【详解】
解:
=
=,
故选A.
【点睛】
本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.
5、D
【解析】
【分析】
根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.
【详解】
解:,
,
,,
,,
解得:,,
.
故选:D.
【点睛】
本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.
6、C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、B
【解析】
【分析】
分别根据同底数幂的乘法法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.
【详解】
、,故本选项不合题意;
B、,故本选项符合题意;
C、,故本选项不合题意;
D、,故本选项不合题意;
故选:B.
【点睛】
本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.
8、C
【解析】
【分析】
根据科学记数法的特点即可求解.
【详解】
解:.
故选:C
【点睛】
本题考查了用科学记数法表示绝对值小于1的数,绝对值小于1的数用科学记数法可以写为的形式,其中1≤|a|<10,n为正整数,n的值为从第一个不为0的数向左数所有0的个数,熟知科学记数法的形式并准确确定a、n的值是解题关键.
9、D
【解析】
【分析】
对已知条件变形为:,然后等式两边再同时平方即可求解.
【详解】
解:由已知条件可知:,
上述等式两边平方得到:,
整理得到:,
故选:D.
【点睛】
本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.
10、D
【解析】
【分析】
利用完全平方公式计算即可.
【详解】
解:A、原式=a2+2ab+b2,本选项错误;
B、原式==-a2+2ab-b2,本选项错误;
C、原式=a2−2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项正确,
故选:D.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
二、填空题
1、-5
【解析】
【分析】
根据多项式乘多项式的乘法法则解决此题.
【详解】
解:∵a+b=-3,ab=1,
∴(a+1)(b+1)(a-1)(b-1)
=[(a+1)(b+1)][(a-1)(b-1)]
=(ab+a+b+1)(ab-a-b+1)
=(1-3+1)×(1+3+1)
=-1×5
=-5.
故答案为:-5.
【点睛】
本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.
2、
【解析】
【分析】
利用零指数幂的意义解答即可.
【详解】
解:零的零次幂没有意义,
,
.
故答案为:.
【点睛】
本题主要考查了零指数幂,利用零指数幂的底数不为零解答是解题的关键.
3、
【解析】
【分析】
根据完全平方式的性质:,可得出答案.
【详解】
∵是完全平方式
∴
解得
故答案为.
【点睛】
本题考查完全平方式,熟记完全平方式的形式,找出公式中的a和b的关键.
4、##
【解析】
【分析】
先按照多项式乘以多项式的法则进行运算,再结合 再代入运算即可.
【详解】
解:(3+i)(1﹣3i)
故答案为:
【点睛】
本题考查的是新定义情境下的多项式乘以多项式的运算,理解新定义的含义进行计算是解本题的关键.
5、
【解析】
【分析】
由题目中提供的方法把前两项凑成一个完全平方式即可求得最小值.
【详解】
所以代数式 的最小值是1;
故答案为:1
【点睛】
本题考查了完全平方公式,根据二次项与一次项凑成完全平方式是本题的关键.
三、解答题
1、x-2y
【解析】
【分析】
根据完全平方公式、平方差公式及整式的各运算法则进行计算即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的混合运算,熟练掌握各运算法则及公式是解题的关键.
2、 (1)
(2)
3、 (1);
(2).
【解析】
【分析】
(1)根据单项式乘以多项式运算法则计算即可得答案;
(2)根据多项式乘以多项式运算法则计算即可得答案.
(1)
=
=.
(2)
=
=
=.
【点睛】
本题考查整式的乘法,单项式乘以多项式,用单项式分别乘以多项式中的每一项,再把所得的积相加;多项式乘以多项式,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加;熟练掌握运算法则是解题关键.
4、
【解析】
【分析】
根据完全平方公式、平方差公式及单项式与多项式的乘法法则逐个运算,最后合并同类项即可.
【详解】
解:原式.
【点睛】
本题考查了完全平方公式、平方差公式及多项式的乘法法则,属于基础题,计算过程中细心即可.
5、 (1)x2+3x+2,x2+2x﹣3
(2)(a+b),ab
(3)x2+(2+m)x+2m
【解析】
【分析】
(1)根据多项式乘以多项式法则进行计算即可;
(2)根据(1)的结果得出规律即可;
(3)根据(x+a)(x+b)=x2+(a+b)x+ab得出即可.
(1)
解: ;
,
故答案为:x2+3x+2,x2+2x﹣3;
(2)
解:.
故答案为:(a+b),ab;
(3)
解: .
故答案为:.
【点睛】
本题考查了多项式乘以多项式的应用,主要考查学生的计算能力.
冀教版七年级下册第八章 整式乘法综合与测试同步训练题: 这是一份冀教版七年级下册第八章 整式乘法综合与测试同步训练题,共15页。试卷主要包含了已知ax2+24x+b=,若,则的值为,下列计算正确的是,计算正确的结果是等内容,欢迎下载使用。
初中数学冀教版七年级下册第八章 整式乘法综合与测试同步训练题: 这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试同步训练题,共17页。试卷主要包含了在下列运算中,正确的是,纳米,下列运算正确的是,我国刑法规定,走私等内容,欢迎下载使用。
冀教版七年级下册第八章 整式乘法综合与测试当堂检测题: 这是一份冀教版七年级下册第八章 整式乘法综合与测试当堂检测题,共16页。试卷主要包含了的计算结果是,纳米,若,则代数式的值为等内容,欢迎下载使用。