数学第九章 三角形综合与测试课后复习题
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30°B.35°C.45°D.60°
2、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )
A.BE是△ABD的中线B.BD是△BCE的角平分线
C.∠1=∠2=∠3D.S△AEB=S△EDB
3、下列各组线段中,能构成三角形的是( )
A.2、4、7B.4、5、9C.5、8、10D.1、3、6
4、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是( )
A.45°B.60°C.75°D.85°
5、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )
A.30°B.45°C.20°D.22.5°
6、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高B.在中,是边上的高
C.在中,是边上的高D.在中,是边上的高
7、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是( )
A.180°﹣αB.180°﹣2αC.360°﹣αD.360°﹣2α
8、如图,已知为的外角,,,那么的度数是( )
A.30°B.40°C.50°D.60°
9、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.6B.5C.4D.3
10、将一副三角板按不同位置摆放,下图中与互余的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
2、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.
3、如图,A,E,F共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.
4、如图,已知BE、CD分别是 △ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________
5、如图,在△ABC中,BA=BC,D为△ABC内一点,将△BDC绕点B逆时针旋转至△BEA处,延长AE,CD交于点F,若∠ABC=70°,则∠AFC的度数为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.
(1)边BC的取值范围是 ;
(2)△ABD与△ACD的周长之差为 ;
(3)在△ABC中,若AB边上的高为2,求AC边上的高.
2、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求
(1)∠CAD的度数;
(2)∠AED的度数.
3、如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)
(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;
(2)我们容易判断出线段AB+AD与BD的数量关系是 ,理由是 .
4、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
5、如图,在直角三角形ABC中,∠BAC=90°,AD是BC边上的高,CE是AB边上的中线,AB=12cm,BC=20cm,AC=16cm,求:
(1)AD的长;
(2)△BCE的面积.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
2、C
【解析】
【分析】
根据三角形中线、角平分线的定义逐项判断即可求解.
【详解】
解:A、∵AE=DE,
∴BE是△ABD的中线,故本选项不符合题意;
B、∵BD平分∠EBC,
∴BD是△BCE的角平分线,故本选项不符合题意;
C、∵BD平分∠EBC,
∴∠2=∠3,
但不能推出∠2、∠3和∠1相等,故本选项符合题意;
D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,
∴S△AEB=S△EDB,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.
3、C
【解析】
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
4、C
【解析】
【分析】
先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.
【详解】
解:如图:
∵∠ACD=90°、∠F=45°,
∴∠CGF=∠DGB=45°,
∴∠α=∠D+∠DGB=30°+45°=75°.
故选C.
【点睛】
本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.
5、A
【解析】
【分析】
由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.
【详解】
解: ∠ABC与∠ACE的平分线相交于点D,
故选A
【点睛】
本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.
6、C
【解析】
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
7、B
【解析】
【分析】
根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.
【详解】
解:∵∠DFE=α,
∴∠FDE+∠FED=180°-α,
由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,
∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,
∴∠ADE+∠AED=180°-∠BDE +180°-∠CED=2α,
∴∠A=180°-(∠ADE+∠AED)=180°-2α,
故选B.
【点睛】
本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.
8、B
【解析】
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
9、D
【解析】
【分析】
过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.
【详解】
解:过D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,
∴DE=DF=2,
∵S△ABC=7,
∴S△ADB+S△ADC=7,
∴×AB×DE+×AC×DF=7,
∴×4×2+×AC×2=7,
解得:AC=3.
故选D .
【点睛】
本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.
10、A
【解析】
【分析】
根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.
【详解】
解:选项A:根据平角的定义得:∠α+90°+∠β=180°,
∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;
选项B:如图,
故B不符合题意;
选项C:如图,
故C不符合题意;
选项D:
故D不符合题意;
故选A
【点睛】
本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.
二、填空题
1、60°##60度
【解析】
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
2、20
【解析】
【分析】
利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
【详解】
解:∵EF∥CD,
∴,
∵∠1是△DCB的外角,
∴∠1-∠B=50°-30°=20º,
故答案为:20.
【点睛】
本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
3、75
【解析】
【分析】
根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.
【详解】
解:连接AC,如图:
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠BAF=130°,∠DCE=125°,
∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,
∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,
∵∠CEF是△ACE外角,
∴∠CEF=∠CAF+∠ACE=75°.
故答案为:75.
【点睛】
本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.
4、110°##110度
【解析】
【分析】
根据∠A=40°求出∠ABC+∠ACB=140°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.
【详解】
解:如图,∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=140°,
∵BE、CD分别是 △ABC的内角平分线,
∴∠EBC=∠ABC,∠BCD==∠ACB,
∴∠EBC+∠BCD=∠ABC+∠ACB=(∠ABC+∠ACB)=70°,
∴∠BOC=180°-(∠EBC+∠BCD)=110°,
∴∠DOE=∠BOC=110°.
故答案为:110°
【点睛】
本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.
5、70°或70度
【解析】
【分析】
先根据旋转的性质得到∠EBD=∠ABC=70°,∠BDC=∠BEA,然后根据邻补角的性质和三角形内角和定理即可得到∠AFC=∠EBD=70°.
【详解】
解: ∵△BDC绕点B逆时针旋转得到△BEA,
∴∠EBD=∠ABC=70°,∠BDC=∠BEA,
∴∠FEG=∠BDG,
∵∠EGF=∠DGB,
∴∠AFC=∠EBD=70°.
故答案为:70°.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
三、解答题
1、(1);(2);(3).
【解析】
【分析】
(1)直接根据三角形三边关系进行解答即可;
(2)根据三角形中线将△ABD与△ACD的周长之差转换为和的差即可得出答案;
(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.
【详解】
解:(1)∵△ABC中AB=5,AC=3,
∴,
即,
故答案为:;
(2)∵△ABD的周长为,
△ACD的周长为,
∵AD是△ABC的边BC上的中线,
∴,
∴-()=,
故答案为:;
(3)设AC边上的高为,
根据题意得:,
即,
解得.
【点睛】
本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.
2、 (1)34°
(2)41°
【解析】
【分析】
(1)根据三角形内角和可得的度数;
(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.
(1)
解:在中,,,
;
(2)
解:在中,,
,
平分,
,
.
【点睛】
本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.
3、(1)见解析;(2)AB+AD>BD,在三角形中,两边之和大于第三边.
【解析】
【分析】
(1)根据直线,射线,线段的作图方法作图即可;
(2)根据三角形三边的关系:两边之和大于第三边进行求解即可.
【详解】
解:(1)如图所示,即为所求;
(2)我们容易判断出线段AB+AD与BD的数量关系是:AB+AD>BD,理由是:在三角形中,两边之和大于第三边,
故答案为:AB+AD>BD,在三角形中,两边之和大于第三边.
【点睛】
本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解.
4、 (1);
(2).
【解析】
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
5、(1);(2)48.
【解析】
【分析】
(1)利用面积法得到AD•BC=AB•AC,然后把AB=12cm,BC=20cm,AC=16cm代入可求出AD的长;
(2)由于三角形的中线将三角形分成面积相等的两部分,所以S△BCE=S△ABC.
【详解】
解:(1)∵∠BAC=90°,AD是BC边上的高,
∴AD•BC=AB•AC,
∴AD==(cm);
(2)∵CE是AB边上的中线,
∴S△BCE=S△ABC=××12×16=48(cm2).
【点睛】
本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.
数学第九章 三角形综合与测试综合训练题: 这是一份数学第九章 三角形综合与测试综合训练题,共22页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。
数学七年级下册第九章 三角形综合与测试同步达标检测题: 这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共19页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试巩固练习: 这是一份冀教版七年级下册第九章 三角形综合与测试巩固练习,共21页。试卷主要包含了若一个三角形的三个外角之比为3,如图,为估计池塘岸边A等内容,欢迎下载使用。