数学七年级下册第九章 三角形综合与测试课后练习题
展开冀教版七年级数学下册第九章 三角形专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,和相交于点O,则下列结论不正确的是( )
A. B. C. D.
2、如图所示,一副三角板叠放在一起,则图中等于( )
A.105° B.115° C.120° D.135°
3、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
4、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )
A.4 B.5 C.8 D.11
5、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
6、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )
A.BE是△ABD的中线 B.BD是△BCE的角平分线
C.∠1=∠2=∠3 D.S△AEB=S△EDB
7、已知,一块含30°角的直角三角板如图所示放置,,则等于( )
A.140° B.150° C.160° D.170°
8、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.6 B.5 C.4 D.3
9、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
10、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,已知点,,分别为,,的中点,且,则阴影部分的面积______.
2、如图,∠MAN=100°,点B,C是射线AM,AN上的动点,∠ACB的平分线和∠MBC的平分线所在直线相交于点D,则∠BDC的大小为__________度.
3、已知两个定点A、B的距离为4厘米,那么到点A、B距离之和为4厘米的点的轨迹是____________.
4、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.
5、在ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=4,则图中阴影部分的面积为__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知的三边长分别为a,b,c.若a,b,c满足,试判断的形状.
2、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.
3、请解答下列各题:
(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线与射向一个水平镜面后被反射,此时,.
①由条件可知:,依据是 ,,依据是 .
②反射光线与平行,依据是 .
(2)解决问题:如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若射出的光线平行于,且,则 ; .
4、如图,点A和点C分别在的边BD,BE上,并且,.
(1)直接写出BC的取值范围;
(2)若,,,求的度数.
5、如图,在中,为的高,为的角平分线,交于点G,,,求的大小.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.
【详解】
解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;
选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;
选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;
选项D、∵,,∴,故选项D不符合题意;
故选:B.
【点睛】
本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.
2、A
【解析】
【分析】
根据直角三角板各角的度数和三角形外角性质求解即可.
【详解】
解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,
∴∠CAO=∠BAC-∠DAE=60°-45°=15°,
∴=∠C+∠CAO=90°+15°=105°,
故选:A.
【点睛】
本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.
3、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
4、C
【解析】
【分析】
直接利用三角形三边关系得出第三边的取值范围,进而得出答案.
【详解】
解:∵一个三角形的两边长分别为3和8,
∴5<第三边长<11,
则第三边长可能是:8.
故选:C.
【点睛】
此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.
5、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
6、C
【解析】
【分析】
根据三角形中线、角平分线的定义逐项判断即可求解.
【详解】
解:A、∵AE=DE,
∴BE是△ABD的中线,故本选项不符合题意;
B、∵BD平分∠EBC,
∴BD是△BCE的角平分线,故本选项不符合题意;
C、∵BD平分∠EBC,
∴∠2=∠3,
但不能推出∠2、∠3和∠1相等,故本选项符合题意;
D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,
∴S△AEB=S△EDB,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.
7、D
【解析】
【分析】
利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.
【详解】
解:∵∠C=90°,∠2=∠CDE=50°,
∠3=∠C+∠CDE
=90°+50°
=140°.
∵a∥b,
∴∠4=∠3=140°.
∵∠A=30°
∴∠1=∠4+∠A
=140°+30°
=170°.
故选:D.
【点睛】
本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.
8、D
【解析】
【分析】
过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.
【详解】
解:过D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,
∴DE=DF=2,
∵S△ABC=7,
∴S△ADB+S△ADC=7,
∴×AB×DE+×AC×DF=7,
∴×4×2+×AC×2=7,
解得:AC=3.
故选D .
【点睛】
本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.
9、C
【解析】
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
10、B
【解析】
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
二、填空题
1、
【解析】
【分析】
根据三角形中线性质,平分三角形面积,先利用AD为△ABC中线可得S△ABD=S△ACD,根据E为AD中点,,根据BF为△BEC中线,即可.
【详解】
解:∵AD为△ABC中线
∴S△ABD=S△ACD,
又∵E为AD中点,
故,
∴,
∵BF为△BEC中线,
∴cm2.
故答案为:1cm2.
【点拨】
本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.
2、50
【解析】
【分析】
根据角平分线的定义和三角形的外角性质解答即可.
【详解】
解:∵CD平分∠ACB,BE平分∠MBC,
∴∠BCD=∠ACB,∠EBC=∠MBC,
∵∠MBC=∠MAN+∠ACB,∠EBC=∠BDC+∠BCD,∠MAN=100°,
∴∠BDC=∠EBC-∠BCD=∠MBC-∠ACB=∠MAN=50°,
故答案为:50.
【点睛】
本题考查三角形的外角性质、角平分线的定义,熟练掌握三角形的外角性质是解答的关键.
3、线段AB
【解析】
【分析】
设到定点A、B的距离之和为4厘米的点是点P,若点P不在线段AB上,易得PA+PB>4,若点P在线段AB上,则PA+PB=AB=4,由此可得答案.
【详解】
解:设到定点A、B的距离之和为4厘米的点是点P,
若点P在不在线段AB上,则点P在直线AB外或线段AB的延长线或线段BA的延长线上,则由三角形的三边关系或线段的大小关系可得:PA+PB>AB,即PA+PB>4,
若点P在线段AB上,则PA+PB=AB=4,
所以到点A、B的距离之和为4厘米的点的轨迹是线段AB.
故答案为:线段AB.
【点睛】
本题考查了点的轨迹和三角形的三边关系,正确理解题意、掌握解答的方法是关键.
4、72°##72度
【解析】
【分析】
由全等三角形的对应角相等和三角形外角定理求解.
【详解】
解:如图
△ABC≌△DCB,∠DBC=36°,
∠ACB=∠DBC=36°,
∠AOB=∠ACB+∠DBC=36°+36°=72°
故答案为:72°.
【点睛】
本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.
5、6
【解析】
【分析】
如图,先标注字母,证明可得从而可得结论.
【详解】
解:如图,先标注字母,
AD⊥BC于点D,BD=CD,
BC=6,AD=4,
故答案为:6
【点睛】
本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.
三、解答题
1、的形状是等边三角形.
【解析】
【分析】
利用平方数的非负性,求解a,b,c的关系,进而判断.
【详解】
解:∵,
∴,
∴a=b=c,
∴ 是等边三角形.
【点睛】
本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含的三角形为直角三角形等,这是解决此类题的关键.
2、75°
【解析】
【分析】
根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.
【详解】
解:∵AD是∠BAC的平分线,∠BAC=80°,
∴∠DAC=40°,
∵CE是△ADC边AD上的高,
∴∠ACE=90°﹣40°=50°,
∵∠ECD=25°
∴∠ACB=50°+25°=75°.
【点睛】
本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.
3、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;
【解析】
【分析】
(1)根据平行线的判定与性质逐一求解可得;
(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.
【详解】
解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;
∠2=∠4,依据是:等量代换;
②反射光线BC与EF平行,依据是:同位角相等,两直线平行;
故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.
(2)如图,
∵∠1=42°,
∴∠4=∠1=42°,
∴∠6=180°42°42°=96°,
∵m∥n,
∴∠2+∠6=180°,
∴∠2=84°,
∴∠5=∠7=,
∴∠3=180°48°42°=90°.
故答案为:84°;90°;
【点睛】
本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.
4、(1)1<BC<9;(2)60°
【解析】
【分析】
(1)根据AB、BC、AC构成三角形,利用三角形三边关系即可得解;
(2)根据平行线的性质可得,根据三角形外角性质可求即可.
【详解】
解:(1)∵,,
∴AC+AB=9,AC-AB=1,
∵AB、BC、AC构成三角形,
∴AC-AB<BC<AC+AB,
即1<BC<9;
(2)∵,
∴,
∵,
∴,
∵∠ACE是△ABC的外角,,
∴.
【点睛】
本题考查三角形三边关系,三角形外角性质,掌握三角形三边关系,三角形外角性质是解题关键.
5、.
【解析】
【分析】
先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .
【详解】
解:为的高,
.
.
在中,.
为的角平分线,
.
.
【点睛】
此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.
数学第九章 三角形综合与测试综合训练题: 这是一份数学第九章 三角形综合与测试综合训练题,共22页。试卷主要包含了如图,在中,,,则外角的度数是等内容,欢迎下载使用。
数学第九章 三角形综合与测试课后复习题: 这是一份数学第九章 三角形综合与测试课后复习题,共23页。
初中第九章 三角形综合与测试当堂达标检测题: 这是一份初中第九章 三角形综合与测试当堂达标检测题,共24页。试卷主要包含了如图,为估计池塘岸边A,下列各图中,有△ABC的高的是等内容,欢迎下载使用。