终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度冀教版七年级数学下册第九章 三角形同步训练试题(含答案解析)

    立即下载
    加入资料篮
    2021-2022学年度冀教版七年级数学下册第九章 三角形同步训练试题(含答案解析)第1页
    2021-2022学年度冀教版七年级数学下册第九章 三角形同步训练试题(含答案解析)第2页
    2021-2022学年度冀教版七年级数学下册第九章 三角形同步训练试题(含答案解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版七年级下册第九章 三角形综合与测试课时练习

    展开

    这是一份冀教版七年级下册第九章 三角形综合与测试课时练习,共23页。试卷主要包含了如图,,,,则的度数是等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、数学课上,同学们在作AC边上的高时,共画出下列四种图形,其中正确的是(       ).A. B.C. D.2、有下列长度的三条线段,其中能组成三角形的是(       A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,173、将一副三角板按不同位置摆放,下图中互余的是(       A.  B.C. D.4、如果一个三角形的两边长都是6cm,则第三边的长不能是(       A.3cm B.6cm C.9cm D.13cm5、若一个三角形的两边长分别为3和8,则第三边长可能是 (  )A.4 B.5 C.8 D.116、已知,一块含30°角的直角三角板如图所示放置,,则等于(       A.140° B.150° C.160° D.170°7、如图,相交于点O,则下列结论不正确的是(       A. B. C. D.8、如图,,则的度数是(       A.10° B.15° C.20° D.25°9、如图,在中,,将沿直线翻折,点落在点的位置,则的度数是(       A.30° B.45° C.60° D.75°10、如图, (  )A.180° B.360° C.270° D.300°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、我们将一副三角尺按如图所示的位置摆放,则_______°.2、在△ABC中,abc分别是∠A,∠B,∠C的对边,且a=3,b=4,若三边长为连续整数,则c=______.3、如图,将一张长方形纸片ABCD沿对角线BD折叠后,点C落在点E处,连接BEADF,再将三角形DEF沿DF折叠后,点E落在点G处,若DG刚好平分∠ADB,那么∠ADB的度数是__________. 4、如图,在中,已知点分别为的中点,且,则阴影部分的面积______.5、定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在中(),边上的中线的周长分成两部分,求的长.2、平面上有三个点ABO.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OCAC的长短并说明理由:(4)直接写出∠AOB的度数.3、如图:已知ABCDBD平分∠ABCAC平分∠BCD,求∠BOC的度数.ABCD(已知),∴∠ABC+       =180°(       ).BD平分∠ABCAC平分∠BCD,(已知),∴∠DBCABC,∠ACBBCD(角平分线的意义).∴∠DBC+∠ACB       )(等式性质),即∠DBC+∠ACB       °.∵∠DBC+∠ACB+∠BOC=180°(       ),∴∠BOC       °(等式性质).4、将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,其中∠A=60°,∠D=45°. (1)如图1,若∠BOD=65°,则∠AOC=______ ;∠AOC=120°,则∠BOD=____ ; (2)如图2,若∠AOC=150°,则∠BOD=_____ ; (3)猜想∠BOD与∠AOC的数量关系,并结合图1说明理由;(4)如图3三角尺AOB不动,将三角尺CODOD边与OA边重合,然后绕点O按顺时针以1秒钟15°的速度旋转,当时间t(其中0<t≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t的值.5、在中,平分平分,求的度数. -参考答案-一、单选题1、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,,不能够组成三角形,不符合题意;,不能够组成三角形,不符合题意;,能够组成三角形,符合题意;,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°, ∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;选项B:如图, 故B不符合题意;选项C:如图, 故C不符合题意;选项D: 故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.4、D【解析】【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”,这样就可求出第三边长的范围,进而选出答案【详解】解:设它的第三条边的长度为xcm依题意有故只有D符合题意,故选:D.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系:三角形两边之和大于第三边、三角形的两边差小于第三边是解题的关键.5、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.6、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1【详解】解:∵∠C90°,∠2=∠CDE50°,3=∠C+CDE90°+50°140°.ab∴∠4=∠3140°.∵∠A30°∴∠1=∠4+A140°+30°170°.故选:D【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.7、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.8、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵ABCD,∠A45°,∴∠A=∠DOE45°,∵∠DOE=∠C+E又∵∴∠E=∠DOE-∠C15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.9、C【解析】【分析】于点是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得【详解】如图,设于点是射线上的一点,折叠,故选C【点睛】本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.10、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.二、填空题1、45【解析】【分析】利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.【详解】解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α−∠β=120°-75°=45°,故答案为:45.【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.2、2或5##5或2【解析】【分析】根据三角形的三边关系求得第三边的取值范围,进一步确定第三边的长,由此得出答案即可.【详解】解:∵a=3,b=4,∴根据三角形的三边关系,得4﹣3<c<4+3.即1<c<7,∵若三边长为连续整数,c=2或5故答案为:2或5.【点睛】本题主要考查三角形三边关系,注意掌握三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,解题的关键掌握三角形三边关系.3、36°##36度【解析】【分析】根据折叠的性质可得∠BDC=∠BDE,∠EDF=∠GDF,由角平分线的定义可得∠BDA=∠GDF+∠BDG=2∠GDF,然后根据矩形的性质及角的运算可得答案.【详解】解:由折叠可知,∠BDC=∠BDE,∠EDF=∠GDFDG平分∠ADB∴∠BDG=∠GDF∴∠EDF=∠BDG∴∠BDE=∠EDF+∠GDF+∠BDG=3∠GDF∴∠BDC=∠BDE=3∠GDFBDA=∠GDF+∠BDG=2∠GDF∵∠BDC+∠BDA=90°=3∠GDF+2∠GDF=5∠GDF∴∠GDF=18°,∴∠ADB=2∠GDF=2×18°=36°.故答案为:36°.【点睛】本题考查的是角的运算及角平分线的定义,正确掌握折叠的性质是解决此题的关键.4、【解析】【分析】根据三角形中线性质,平分三角形面积,先利用ADABC中线可得SABD=SACD,根据EAD中点,,根据BFBEC中线,即可.【详解】解:∵ADABC中线SABD=SACD又∵EAD中点,BFBEC中线,cm2故答案为:1cm2【点拨】本题考查了三角形中线的性质,牢固掌握并会运用是解题关键.5、【解析】【分析】根据新定义分三种情况:①当99°的内角是另一个角的两倍时,直接可得α的度数;②当一个内角α的两倍时,不符合三角形的内角和关系,舍去;③当三角形中另两个角是“倍角”关系时,列方程得到,求解即可.【详解】解:分三种情况:①当99°的内角是另一个角的两倍时,倍角α的度数是②当一个内角α的两倍时,则,不符合三角形的内角和关系,故舍去;③当三角形中另两个角是“倍角”关系时,得到,得α=故答案为:【点睛】此题考查了三角形的内角和定理,新定义计算,一元一次方程,正确理解新定义并列式计算是解题的关键.三、解答题1、【解析】【分析】由题意可得,由中线的性质得,故可求得,即可求得【详解】由题意知DBC中点BC=24,CD=BD=12且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.2、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【解析】【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以(3) ,理由如下:利用刻度尺测量得:AC=2cm,(4)根据题意得:【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.3、BCD,两直线平行,同旁内角互补,∠ABC+BCD90,三角形内角和等于180°,90【解析】【分析】根据题意利用ABCD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.【详解】解:∵ABCD(已知),∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),BD平分∠ABCAC平分∠BCD(已知),∴∠DBCABC,∠ACBBCD(角平分线定义),∴∠DBC+∠ACB(∠ABC+∠BCD)(等式性质),即∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),∴∠BOC=90°(等式性质),故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.4、(1)115°,60°;(2)30°;(3)∠AOC+∠DOB=180°,理由见解析;(4)时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用ODABCDOBCDABOCAB分别求出即可.【详解】解:(1)若∠BOD=65°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,若∠AOC=120°,则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;故答案为:115°;60°;(2)如图2,若∠AOC=150°,则∠BOD=360°-∠AOC-∠AOB-∠COD=360°-150°-90°-90°=30°;故答案为:30°;(3)∠AOC与∠BOD互补.理由如下:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补;(4)分四种情况讨论:ODAB时,∠AOD=90°-∠A=30°,t=30°15°=2(秒);CDOB时,∠AOD=∠D=45°,t=45°15°=3(秒);CDAB时,∠AOD=180°-60°-45°=75°,t=75°15°=5(秒);ODOA时,∠AOD=90°,t=90°15°=6(秒);综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.【点睛】本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.5、【解析】【分析】根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.【详解】解:∵平分由三角形内角和的性质可得,平分由三角形内角和的性质可得,【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解. 

    相关试卷

    冀教版七年级下册第九章 三角形综合与测试精练:

    这是一份冀教版七年级下册第九章 三角形综合与测试精练,共20页。试卷主要包含了已知△ABC的内角分别为∠A,如图,是的中线,,则的长为等内容,欢迎下载使用。

    初中冀教版第九章 三角形综合与测试课后练习题:

    这是一份初中冀教版第九章 三角形综合与测试课后练习题,共23页。

    冀教版七年级下册第九章 三角形综合与测试同步测试题:

    这是一份冀教版七年级下册第九章 三角形综合与测试同步测试题,共21页。试卷主要包含了下列各图中,有△ABC的高的是,如图,在中,AD,如图,在中,若点使得,则是的等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map