![2021-2022学年度冀教版七年级数学下册第九章 三角形专题训练试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12767298/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第九章 三角形专题训练试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12767298/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版七年级数学下册第九章 三角形专题训练试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12767298/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第九章 三角形综合与测试课时训练
展开这是一份冀教版七年级下册第九章 三角形综合与测试课时训练,共20页。
冀教版七年级数学下册第九章 三角形专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
2、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
证法1:如图, ∵∠A=70°,∠B=63°, 且∠ACD=133°(量角器测量所得) 又∵133°=70°+63°(计算所得) ∴∠ACD=∠A+∠B(等量代换). | 证法2:如图, ∵∠A+∠B+∠ACB=180°(三角形内角和定理), 又∵∠ACD+∠ACB=180°(平角定义), ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换). ∴∠ACD=∠A+∠B(等式性质). |
下列说法正确的是( )
A.证法1用特殊到一般法证明了该定理
B.证法1只要测量够100个三角形进行验证,就能证明该定理
C.证法2还需证明其他形状的三角形,该定理的证明才完整
D.证法2用严谨的推理证明了该定理
3、如图,图形中的的值是( )
A.50 B.60 C.70 D.80
4、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
5、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
6、有下列长度的三条线段,其中能组成三角形的是( )
A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,17
7、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
8、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
A. B. C. D.
9、一把直尺与一块三角板如图放置,若,则( )
A.120° B.130° C.140° D.150°
10、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )
A.100° B.105° C.115° D.120°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知△ABC,通过测量、计算得△ABC的面积约为________cm2(结果保留一位小数).
2、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.
3、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.
4、已知ABC中,AB=5,AC=7,BC=a,则a的取值范围是 ___.
5、若△ABC的边AB、BC的长是方程组的解,设边AC的长为m,则m的取值范围是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,为的高,为的角平分线,交于点G,,,求的大小.
2、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
3、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD.
4、如图,ABCD,∠BMN与∠DNM的平分线相交于点G,
完成下面的证明:
∵MG平分∠BMN,
∴∠GMN=∠BMN( ),
同理∠GNM=∠DNM.
∵ABCD
∴∠BMN+∠DNM=________( ).
∴∠GMN+∠GNM=________.
∵∠GMN+∠GNM+∠G=________,
∴∠G=________.
5、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.
(1)依题意补全图形(借助量角器、刻度尺画图);
(2)写出的依据:
(3)比较线段OC与AC的长短并说明理由:
(4)直接写出∠AOB的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
2、D
【解析】
【分析】
利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
【详解】
解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
证法2才是用严谨的推理证明了该定理,
故A不符合题意,C不符合题意,D符合题意,
证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
故选D
【点睛】
本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
3、B
【解析】
【分析】
根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.
【详解】
解:由题意得:
∴,
∴,
故选B.
【点睛】
本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.
4、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
5、B
【解析】
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
6、C
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得,
、,不能够组成三角形,不符合题意;
、,不能够组成三角形,不符合题意;
、,能够组成三角形,符合题意;
、,不能组成三角形,不符合题意;
故选:C.
【点睛】
此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
7、C
【解析】
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
8、D
【解析】
【分析】
设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
【详解】
解:设第三根木棒长为x厘米,由题意得:
8﹣5<x<8+5,即3<x<13,
故选:D.
【点睛】
此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
9、B
【解析】
【分析】
由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.
【详解】
解:如图所示,由题意得:∠A=90°,BC∥EF,
∴∠2=∠CBD,
又∵∠CBD=∠1+∠A=130°,
∴∠2=130°,
故选B.
【点睛】
本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.
10、B
【解析】
【分析】
首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.
【详解】
解:在△ABC和△DEF中,
∠BAC=∠EDF=90°,∠F=45°,∠B=60°,
∴∠C=90°-∠B=30°,
∠E=90°-∠F=45°,
∵BC∥EF,
∴∠MDC=∠E=45°,
在△CMD中,∠CMD=180°-∠C-∠MDC=105°.
故选:B.
【点睛】
本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.
二、填空题
1、3.9
【解析】
【分析】
过点A作AD⊥BC的延长线于点D,测量出BC,AD的长,再利用三角形的面积公式即可求出△ABC的面积.
【详解】
解:过点C作CD⊥AB的延长线于点D,如图所示.
经过测量,BC=2.2cm,AD=3.5cm,
∴S△ABC=AB•CD=×2.2×3.5=3.85≈3.9(cm2).
故答案为:3.9.
【点睛】
本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.
2、80
【解析】
【分析】
先求解 再求解 再利用三角形的外角的性质可得答案.
【详解】
解: ,,
,
,
CG平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.
3、20°##20度
【解析】
【分析】
根据角平分线的性质得到,再利用三角形外角的性质计算.
【详解】
解:∵与的平分线相交于点D,
∴,
∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
∴∠D=∠DCE-∠DBC=,
故答案为:20°.
【点睛】
此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
4、2<a<12
【解析】
【分析】
直接利用三角形三边关系得出a的取值范围.
【详解】
解:∵△ABC中,AB=5,AC=7,BC=a,
∴7﹣5<a<7+5,
即2<a<12.
故答案为:2<a<12.
【点睛】
本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.
5、3<m<9
【解析】
【分析】
直接利用三角形三边关系得出答案.
【详解】
解:∵△ABC的边AB、BC的长是方程组的解,边AC的长为m,
∴m的取值范围是:3<m<9,
故答案为:3<m<9.
【点睛】
本题主要考查了三角形三边关系,正确掌握三角形三边关系是解题关键.
三、解答题
1、.
【解析】
【分析】
先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .
【详解】
解:为的高,
.
.
在中,.
为的角平分线,
.
.
【点睛】
此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.
2、(1);(2)证明见详解.
.
【解析】
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
3、见解析
【解析】
【分析】
利用角平分线得到∠BAD=∠CAD,根据三角形外角的性质推出∠CAD=∠F,即可得到结论.
【详解】
∵AD是△ABC的角平分线,
∴∠BAD=∠CAD,
又∵∠BAD+∠CAD=∠AGF+∠F,且∠AGF=∠F,
∴∠CAD=∠F,
∴.
【点睛】
此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.
4、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°
【解析】
【分析】
根据角平分线的定义,可得∠GMN=∠BMN,∠GNM=∠DNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.
【详解】
证明:∵MG平分∠BMN,
∴∠GMN=∠BMN(角分线的定义),
同理∠GNM=∠DNM.
∵ABCD,
∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).
∴∠GMN+∠GNM=90°.
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°.
【点睛】
本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.
5、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°
【解析】
【分析】
(1)根据题意画出图形,即可求解;
(2)根据三角形的两边之和大于第三边,即可求解;
(3)利用刻度尺测量得: ,即可求解;
(4)用180°减去80°,再减去30°,即可求解.
【详解】
解:(1)根据题意画出图形,如图所示:
(2)在△AOB中,因为三角形的两边之和大于第三边,
所以;
(3) ,理由如下:利用刻度尺测量得: ,
AC=2cm,
∴;
(4)根据题意得: .
【点睛】
本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试精练,共20页。试卷主要包含了已知△ABC的内角分别为∠A,如图,是的中线,,则的长为等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试当堂检测题,共22页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试同步达标检测题,共17页。试卷主要包含了若三角形的两边a,下列图形中,不具有稳定性的是,如图,在ABC中,点D等内容,欢迎下载使用。