冀教版七年级下册第九章 三角形综合与测试同步练习题
展开这是一份冀教版七年级下册第九章 三角形综合与测试同步练习题,共21页。试卷主要包含了如图,图形中的的值是,如图,直线l1l2,被直线l3等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
A.15° B.10° C.20° D.25°
2、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
3、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
4、如图,在ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为( )
A.110 B.100 C.55 D.45
5、如图,图形中的的值是( )
A.50 B.60 C.70 D.80
6、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).
A. B.C. D.
7、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )
A.100° B.105° C.115° D.120°
8、如图,一扇窗户打开后,用窗钩AB可将其固定( )
A.三角形的稳定性
B.两点之间线段最短
C.四边形的不稳定性
D.三角形两边之和大于第三边
9、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
10、如图,是的中线,,则的长为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.
2、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.
3、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.
4、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________.
5、中,比大10°,,则______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,ABCD,∠BAC的角平分线AP与∠ACD的角平分线CP相交于点P,求证:AP⊥CP.
2、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB
3、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.
(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;
(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).
4、请解答下列各题:
(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线与射向一个水平镜面后被反射,此时,.
①由条件可知:,依据是 ,,依据是 .
②反射光线与平行,依据是 .
(2)解决问题:如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若射出的光线平行于,且,则 ; .
5、如图,ADEF,.请从以下三个条件:①平分,②,③中选择一个作为条件,使DGAB,你选的条件是______(填写序号).并说明理由.
-参考答案-
一、单选题
1、A
【解析】
【分析】
利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
【详解】
∵DE∥AF,
∴∠CDE=∠CFA=45°,
∵∠CFA=∠B+∠BAF,∠B=30°,
∴∠BAF=15°,
故选A.
【点睛】
本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
2、C
【解析】
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
3、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
4、B
【解析】
【分析】
根据三角形的外角的性质计算即可.
【详解】
解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,
故选:B.
【点睛】
本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.
5、B
【解析】
【分析】
根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.
【详解】
解:由题意得:
∴,
∴,
故选B.
【点睛】
本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.
6、A
【解析】
【分析】
满足两个条件:①经过点B;②垂直AC,由此即可判断.
【详解】
解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,
故选:A.
【点睛】
本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
7、B
【解析】
【分析】
首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.
【详解】
解:在△ABC和△DEF中,
∠BAC=∠EDF=90°,∠F=45°,∠B=60°,
∴∠C=90°-∠B=30°,
∠E=90°-∠F=45°,
∵BC∥EF,
∴∠MDC=∠E=45°,
在△CMD中,∠CMD=180°-∠C-∠MDC=105°.
故选:B.
【点睛】
本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.
8、A
【解析】
【分析】
由三角形的稳定性即可得出答案.
【详解】
一扇窗户打开后,用窗钩AB可将其固定,
故选:A.
【点睛】
本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.
9、C
【解析】
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
10、B
【解析】
【分析】
直接根据三角形中线定义解答即可.
【详解】
解:∵是的中线,,
∴BM= ,
故选:B.
【点睛】
本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
二、填空题
1、2<c<6
【解析】
【分析】
根据非负数的性质得到,,再根据三角形三边的关系得.
【详解】
解:,
∴,
,,
所以,
故答案为:
【点睛】
本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.
2、140
【解析】
【分析】
根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.
【详解】
解:∵∠A′NM=20°,∠CNE=∠A′NM,
∴∠CNE=20°,
∵DE∥BC,
∴∠DEN=∠CNE=20°,
由翻折性质得:∠AED=∠DEN=20°,
∴∠AEN=40°,
∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.
故答案为:140
【点睛】
本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.
3、三角形两边之和大于第三边
【解析】
【分析】
表示出和四边形BDEC的周长,再结合中的三边关系比较即可.
【详解】
解:的周长=
四边形BDEC的周长=
∵在中
∴
即的周长一定大于四边形BDEC的周长,
∴依据是:三角形两边之和大于第三边;
故答案为三角形两边之和大于第三边
【点睛】
本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.
4、85
【解析】
【分析】
利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.
【详解】
解:∵将△ABC绕点B逆时针旋转95°,
∴∠ABE=95°,AB=BE,∠CAB=∠E,
∵AB=BE,
∴∠E=∠BAE,
∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE
=180°−95°
=85°,
故答案为:85.
【点睛】
本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.
5、70°
【解析】
【分析】
根据三角形内角和定理可得,由题意比大,可得,组成方程组求解即可.
【详解】
解:∵,
∴,
∵比大,
∴,
∴,
解得:,
故答案为:.
【点睛】
题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.
三、解答题
1、见解析
【解析】
【分析】
利用角平分线的性质及平行线的性质,通过等量代换能证明出,即可证明AP⊥CP.
【详解】
证明:∵ABCD(已知),
∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补),
∵AP、CP分别平分∠BAC、∠ACD(已知),
∴∠CAP=∠BAC,
∠ACP=∠ACD,
∴∠CAP+∠ACP=∠BAC+∠ACD=(∠BAC+∠ACD)=90°,
又∵∠CAP+∠ACP+∠P=180°,
∴∠P=90°,
∴AP⊥CP.
【点睛】
本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解.
2、见解析
【解析】
【分析】
根据三角形内角和定理可得,从而可得结论.
【详解】
解:在中,,
在中,
∵
∴
∴ED⊥AB
【点睛】
本题主要考查了垂直的判定,证明是解答本题的关键.
3、(1)60°;(2)β-α.
【解析】
【分析】
(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;
(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.
【详解】
解:(1)∵EF∥BC,∠BEF=120°,
∴∠EBC=60°,∠AEF=60°,
又∵BD平分∠EBC,
∴∠EBD=∠BDE=∠DBC=30°,
又∵∠BDA=90°,
∴∠EDA=60°,
∴∠BAD=60°;
(2)如图2,过点A作AG∥BC,
则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,
则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.
【点睛】
考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.
4、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;
【解析】
【分析】
(1)根据平行线的判定与性质逐一求解可得;
(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.
【详解】
解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;
∠2=∠4,依据是:等量代换;
②反射光线BC与EF平行,依据是:同位角相等,两直线平行;
故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.
(2)如图,
∵∠1=42°,
∴∠4=∠1=42°,
∴∠6=180°42°42°=96°,
∵m∥n,
∴∠2+∠6=180°,
∴∠2=84°,
∴∠5=∠7=,
∴∠3=180°48°42°=90°.
故答案为:84°;90°;
【点睛】
本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.
5、①或③,理由见解析.
【解析】
【分析】
首先根据ADEF,,得到,然后根据平行线的判定定理逐个判断求解即可.
【详解】
解:∵ADEF,
∴,
∵,
∴,
当选择条件①平分时,
∴,
∴,
∴DGAB,故选择条件①可以使DGAB;
当选择条件②时,
∵,,
∴,同旁内角相等,不能证明两直线平行,
∴选择条件②不可以使DGAB;
当选择条件③时,
∵,
∴,
∴DGAB,故选择条件③可以使DGAB,
综上所述,使DGAB,可以选的条件是①或③.
故答案为:①或③.
【点睛】
此题考查了平行线的性质和判定定理,三角形外角的性质和角平分线的概念,解题的关键是熟练掌握平行线的性质和判定定理.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
相关试卷
这是一份2020-2021学年第九章 三角形综合与测试习题,共21页。试卷主要包含了如图,在中,,,则外角的度数是,如图,,,,则的度数是,如图,等内容,欢迎下载使用。
这是一份七年级下册第九章 三角形综合与测试随堂练习题,共22页。
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。