2020-2021学年第九章 三角形综合与测试课后测评
展开冀教版七年级数学下册第九章 三角形专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,一扇窗户打开后,用窗钩AB可将其固定( )
A.三角形的稳定性
B.两点之间线段最短
C.四边形的不稳定性
D.三角形两边之和大于第三边
2、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42° B.48° C.52° D.58°
3、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
4、下列图形中,不具有稳定性的是( )
A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形
5、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )
A.85° B.75° C.55° D.95°
6、三个等边三角形的摆放位置如图所示,若,则的度数为
A. B. C. D.
7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
8、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
9、下列长度的三条线段能组成三角形的是( )
A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,9
10、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
2、在中,,则的取值范围是_______.
3、如图,已知AE∥BD,∠1=88°,∠2=28°.则∠C=_____.
4、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).
5、如图,在中,D、E分别为AC、BC边上一点,AE与BD交于点F.已知,,且的面积为60平方厘米,则的面积为______平方厘米;如果把“”改为“”其余条件不变,则的面积为______平方厘米(用含n的代数式表示).
三、解答题(5小题,每小题10分,共计50分)
1、如图,在三角形ABC中,∠ABC与∠ACB的角平分线交于点P
(1)当∠A=60°时,求∠BPC的的度数;(提示:三角形内角和180°);
(2)当∠A=α°时,直接写出∠A与∠BPC的数量关系.
2、已知的三边长分别为a,b,c.若a,b,c满足,试判断的形状.
3、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB//CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
4、已知:如图,,,求的度数.
5、如图,BD是的角平分线,BE是的AC边上的中线.
(1)若的周长为13,,,求AB的长.
(2)若,,求的度数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由三角形的稳定性即可得出答案.
【详解】
一扇窗户打开后,用窗钩AB可将其固定,
故选:A.
【点睛】
本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.
2、B
【解析】
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
3、A
【解析】
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
4、B
【解析】
【分析】
根据三角形具有稳定性,四边形不具有稳定性即可作出选择.
【详解】
解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;
故选:B.
【点睛】
本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.
5、A
【解析】
【分析】
由平行线的性质,得,然后由三角形外角的性质,即可求出答案.
【详解】
解:由题意,如图,
∵,
∴,
∵,
∴;
故选:A
【点睛】
本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.
6、A
【解析】
【分析】
利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
【详解】
解:,,
,
,
,
,
故选:.
【点睛】
本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
7、C
【解析】
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
8、C
【解析】
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
9、C
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:根据三角形的三边关系,得,
A、3+4=7<8,不能组成三角形,该选项不符合题意;
B、5+6=11,不能够组成三角形,该选项不符合题意;
C、5+6=11>10,能够组成三角形,该选项符合题意;
D、4+5=9,不能够组成三角形,该选项不符合题意.
故选:C.
【点睛】
本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
10、C
【解析】
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
二、填空题
1、E
【解析】
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
2、
【解析】
【分析】
由构成三角形的条件计算即可.
【详解】
∵中
∴
∴.
故答案为:.
【点睛】
本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
3、60°
【解析】
【分析】
根据平行线的性质可得∠3=88°,根据三角形的外角性质即可求得∠C
【详解】
解:∵
∴∠1=∠3=88°,
∵∠3=∠2+∠C,
∴∠C=∠3﹣∠2=88°﹣28°=60°,
故答案为:60°.
【点睛】
本题考查了平行线的性质与判定,三角形的外角的性质,求得∠3=88°是解题的关键.
4、不合格
【解析】
【分析】
连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.
【详解】
解:如图,连接AC并延长,
由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,
∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D
=∠BAD+∠B+∠D
=90°+25°+25°
=140°,
∵140°≠150°,
∴这个零件不合格.
故答案为:不合格.
【点睛】
本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.
5、 6
【解析】
【分析】
连接CF,依据AD=CD,BE=2CE,且△ABC的面积为60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,依据S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面积为6平方厘米;当BE=nCE时,运用同样的方法即可得到△ADF的面积.
【详解】
如图,连接CF,
∵AD=CD,BE=2CE,且△ABC的面积为60平方厘米,
∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,
设S△ADF=S△CDF=x,则
S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,
∵S△ACE=S△FEC+S△AFC,
∴,
解得x=6,
即△ADF的面积为6平方厘米;
当BE=nCE时,S△AEC=,
设S△AFD=S△CFD=x,则
S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),
∵S△ACE=S△FEC+S△AFC,
∴,
解得,
即△ADF的面积为平方厘米;
故答案为:
【点睛】
本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论.解题时注意:三角形的中线将三角形分成面积相等的两部分.
三、解答题
1、 (1)120°
(2)∠BPC=
【解析】
【分析】
(1)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,∠PCB=,根据∠A=60°,得出=120°,求∠PBC+∠PCB==60°即可;
(2)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,得出∠PCB=,根据∠A=α°,得出=180°-α°,可求∠PBC+∠PCB=即可.
(1)
解:如图,∵BP是∠ABC的平分线,
∴∠PBC=.(角平分线定义)
∵CP是∠ACB的平分线,
∴∠PCB=,
∴∠PBC+∠PCB= ,
∵∠A=60°,
∴=120°,
∴∠PBC+∠PCB==60°,
∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-60°=120°.
(2)
如图,∵BP是∠ABC的平分线,
∴∠PBC=.(角平分线定义)
∵CP是∠ACB的平分线,
∴∠PCB=,
∴∠PBC+∠PCB=,
∵∠A=α°,
∴=180°-α°,
∴∠PBC+∠PCB=,
∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-90°=90°.
∴∠BPC=.
【点睛】
本题考查角平分线定义,三角形内角和,掌握角平分线定义,三角形内角和是解题关键.
2、的形状是等边三角形.
【解析】
【分析】
利用平方数的非负性,求解a,b,c的关系,进而判断.
【详解】
解:∵,
∴,
∴a=b=c,
∴ 是等边三角形.
【点睛】
本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含的三角形为直角三角形等,这是解决此类题的关键.
3、(1)见解析;(2)见解析;(3)108°
【解析】
【分析】
(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
【详解】
证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
∴∠AEG=∠C
∴AB//CD
(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
∴∠DGC+∠AHF=180°
∴EC//BF
∴∠B=∠AEG
由(1)得∠AEG=∠C
∴∠B=∠C
(3)由(2)得EC//BF
∴∠BFC+∠C=180°
∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°
∵∠C+∠DGC+∠D=180°
∴∠D=108°
【点睛】
此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
4、97°
【解析】
【分析】
延长AB交DE于点F,根据平行线的性质可得,根据三角形的外角性质即可求得的度数.
【详解】
解:如图,延长AB交DE于点F.
∵AB∥CD,∠D=60°,
∴
∵∠ABE是△BEF的一个外角,
∴∠ABE=∠E+∠1
∵∠E=37°
∴∠ABE=37°+60°=97°
【点睛】
本题考查了平行线的性质,三角形外角的性质,掌握三角形的外角性质是解题的关键.
5、(1)3;(2).
【解析】
【分析】
(1)首先根据中线的性质得到,然后根据的周长为13,即可求出AB的长;
(2)首先根据BD是的角平分线得到,然后根据三角形内角和定理即可求出的度数.
【详解】
(1)∵BE是的AC边上的中线,
∴,
又∵的周长为13,
∴;
(2)∵BD是的角平分线,
∴,
又∵,
∴.
【点睛】
此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.
冀教版七年级下册第九章 三角形综合与测试巩固练习: 这是一份冀教版七年级下册第九章 三角形综合与测试巩固练习,共23页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。
数学七年级下册第九章 三角形综合与测试课后练习题: 这是一份数学七年级下册第九章 三角形综合与测试课后练习题,共21页。
冀教版七年级下册第九章 三角形综合与测试课后作业题: 这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。