数学七年级下册第九章 三角形综合与测试课时练习
展开
这是一份数学七年级下册第九章 三角形综合与测试课时练习,共22页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )A.12 B.6 C.3 D.22、将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则的度数是( )A.45° B.60° C.75° D.85°3、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边4、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )A.15° B.10° C.20° D.25°5、人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短6、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )A.180° B.210° C.360° D.270°7、如图,图形中的的值是( )A.50 B.60 C.70 D.808、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°9、下列四个图形中,线段BE是△ABC的高的是( )A. B.C. D.10、将一副三角板按不同位置摆放,下图中与互余的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,从A处观测C处的仰角是,从B处观测C处的仰角,则从C处观测A,B两处的视角的度数是__________.2、如图:中,,,于D,CE平分,于F,则______°.3、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:①平分;②;③与互余的角有个;④若,则.其中正确的是________.(请把正确结论的序号都填上)4、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度. 5、如图,在△ABC中,CD平分∠ACB.若∠A=70°,∠B=50°,则∠ADC=_____度.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.2、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.3、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.(1)特例探索:若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.(2)类比探索:∠ABP、∠ACP、∠A的关系是 .(3)变式探索:如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .4、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.5、如图,在△ABC中,D为BC延长线上一点,DE⊥AB于E,交AC于F,若∠A=40°,∠D=45°,求∠ACB的度数. -参考答案-一、单选题1、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=S△ABC=×12=6,∵点E为AB的中点,∴S△BDE=S△ABD=×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.2、C【解析】【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【详解】解:如图:∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,∴∠α=∠D+∠DGB=30°+45°=75°.故选C.【点睛】本题主要考查三角形的外角的性质,掌握三角形的内角和定理和三角形外角的性质是解答本题的关键.3、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.4、A【解析】【分析】利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.【详解】∵DE∥AF,∴∠CDE=∠CFA=45°,∵∠CFA=∠B+∠BAF,∠B=30°,∴∠BAF=15°,故选A.【点睛】本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.5、B【解析】【分析】首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.【详解】人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.故选:B.【点睛】本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.6、B【解析】【分析】已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故选D.【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.7、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.8、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.9、D【解析】【分析】根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.【详解】解:线段是的高的图是选项.故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.10、A【解析】【分析】根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.【详解】解:选项A:根据平角的定义得:∠α+90°+∠β=180°, ∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;选项B:如图, 故B不符合题意;选项C:如图, 故C不符合题意;选项D: 故D不符合题意;故选A【点睛】本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.二、填空题1、【解析】【分析】根据三角形外角的性质求解即可.【详解】解:由题意可得,,∴,故答案为:【点睛】此题考查了三角形外角的性质,解题的关键是掌握三角形外角的有关性质.2、803、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.【详解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴与∠DBE互余的角共有4个 故③错误∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=故④错误即正确的结论有①②故答案为:①②【点睛】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.4、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.5、80【解析】【分析】首先根据三角形的内角和定理求得∠BCA=180°-∠A-∠B=60°,再根据角平分线的概念,得∠ACD=∠BCA=30°,最后根据三角形ADC的内角和来求∠ADC度数.【详解】解:∵在△ABC中,∠A=70°,∠B=50°,∴∠BCA=180°-∠B-∠C=60°;又∵CD平分∠BCA,∴∠DCA=∠BCA=30°,∴∠ADC=180°-70°-30°=80°.故答案为:80.【点睛】本题主要考查了三角形的内角和定理以及角平分线的概念.解题的关键是找到已知角与所求角之间的数量关系.三、解答题1、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=,∵AD是△ABC边BC上的高,AD⊥BC,∴∠ADC=90°,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.2、;【解析】【分析】根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.【详解】解:∵AE是边BC上的高∴∴在中,有又∵∴∵AD是的平分线∴∵在中,有已知,∴∴∴【点睛】本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.3、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.【解析】【分析】(1)由三角形内角和为180°计算和中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.(3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.【详解】(1)在中∵∠MPN=90°∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°在中∵∠A+∠ABC+∠ACB=180°又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°∵∠PBC+∠PCB=90°,∠A=50°∴∠ABP +∠ACP=180°-90°-50°=40°(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°又∵∠PBC+∠PCB=90°∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°(3)如图所示,设PN与AB交于点H∵∠A+∠ACP=∠AHP又∵∠ABP+∠MPN =∠AHP∴∠A+∠ACP=∠ABP+∠MPN又∵∠MPN =90°∴∠A+∠ACP =90°+∠ABP∴∠A+∠ACP-∠ABP=90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.4、,【解析】【分析】由题意可得,,由中线的性质得,故可求得,即可求得.【详解】由题意知,,∵,D为BC中点∴∴即则BC=24,CD=BD=12则且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.5、95°【解析】【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【详解】解:∵DF⊥AB,∠A=40°∴∠AEF=∠CED=50°,∴∠ACB=∠D+∠CED=45°+50°=95°.【点睛】本题考查了三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.
相关试卷
这是一份冀教版七年级下册第九章 三角形综合与测试巩固练习,共23页。试卷主要包含了若三角形的两边a等内容,欢迎下载使用。
这是一份冀教版第九章 三角形综合与测试课后测评,共25页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试课后作业题,共24页。试卷主要包含了如图,是的中线,,则的长为等内容,欢迎下载使用。