2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试精练
展开第十章一元一次不等式和一元一次不等式组同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中不正确的个数有( )
①有理数的倒数是
②绝对值相等的两个数互为相反数
③绝对值既是它本身也是它的相反数的数只有0
④几个有理数相乘,若有奇数个负因数,则乘积为负数
⑤若,则
A.1个 B.2个 C.3个 D.4个
2、某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是( )
A. B.
C. D.
3、若,则下列式子中,错误的是( )
A. B. C. D.
4、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>125
5、下列式子中,是一元一次不等式的有( )
①3a-2=4a+9;②3x-6>3y+7;③2x3<5;④x2>1;⑤2x+6>x.A.1个 B.2个 C.3个 D.4个
6、在数轴上表示不等式的解集正确的是( ).A. B.
C. D.
7、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
A.10 B.8 C.7 D.4
8、,那么( )
A. B. C. D.无法确定
9、若m>n,则下列不等式不成立的是( )
A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣4<n﹣4
10、不等式的解集在数轴上表示正确的是 ( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若不等式组无解,则m的取值范围是______.
2、不等式组的解集是_______.
3、解一元一次不等式的一般步骤:
(1)______:各项都乘以分母的最小公倍数;
(2)______:注意符号问题;
(3)______:移动的项要变号;
(4)______ :系数相加减,字母及字母的指数不变;
(5) ______ :不等式两边同时除以未知数的系数.
4、不等式的解集是_______.
5、 “的4倍减去的差是正数”,用不等式表示为_________.
三、解答题(5小题,每小题10分,共计50分)
1、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A,B两种型号的新型公交车,已知购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.
(1)求A型公交车和B型公交车每辆各多少万元?
(2)公交公司计划购买A型公交车和B型公交车共140辆,且购买A型公交车的总费用不高于B型公交车的总费用,那么该公司最多购买多少辆A型公交车?
2、解不等式组:,并把其解集在数轴上表示出来.
3、某学校初二年级党支部组织“品读经典,锤炼党性”活动,需要购买不同类型的书籍给党员老师阅读.已知购买1本类书和2本类书共需82元;购买2本类书和1本类书共需74元.
(1)求,两类书的单价;
(2)学校准备购买,两类书共34本,且类书的数量不高于类书的数量.购买书籍的花费不得高于900元,则该学校有哪几种购买方案?
4、如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们定义这个不等式为绝对值不等式,
小明在课外小组活动时探究发现:
①|x|>a(a>0)的解集是x>a或x<﹣a;②|x|<a(a>0)的解集是﹣a<x<a.
根据小明的发现,解决下列问题:
(1)请直接写出下列绝对值不等式的解集;
①|x|>3的解集是
②|x|<的解集是 .
(2)求绝对值不等式2|x﹣1|+1>9的解集.
5、解不等式(组),并把解集在数轴上表示出来.
(1)
(2)
-参考答案-
一、单选题
1、B
【解析】
【分析】
由倒数的定义可判断①,由绝对值的含义可判断②③,由有理数的乘法中积的符号确定方法可判断④,由不等式的基本性质可判断⑤,从而可得答案.
【详解】
解:因为 所以有理数的倒数是,故①正确;不符合题意
绝对值相等的两个数互为相反数或者相等,故②不正确;符合题意;
绝对值既是它本身也是它的相反数的数只有0,故③正确;不符合题意;
几个不为零有理数相乘,若有奇数个负因数,则乘积为负数,若其中一个因数为0,则结果为0,故④不正确;符合题意;
若,则,故⑤正确;不符合题意;
所以②④符合题意
故选: B.
【点睛】
本题考查的是倒数的含义,绝对值的含义,有理数乘法中积的符号确定,不等式的性质,掌握以上基础知识是解本题的关键.
2、C
【解析】
【分析】
由至多得到小于等于,结合大于得到答案.
【详解】
解:由题意得,攀攀的年龄大于1且小于等于3,
故选:C.
【点睛】
此题考查了在数轴上表示不等式的解集,正确掌握大于、大于等于、小于等于的不同表示方法是解题的关键.
3、D
【解析】
【分析】
利用不等式的基本性质逐一判断即可.
【详解】
解:A. 若,则正确,故A不符合题意;
B. 若,则正确,故B不符合题意;
C. 若,则,正确,故C不符合题意;
D. 若d,则,所以D错误,故D符合题意,
故选:D.
【点睛】
本题考查不等式的性质,掌握相关知识是解题关键.
4、D
【解析】
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
5、A
【解析】
【分析】
根据一元一次不等式的定义逐个判断即可.
【详解】
解:①3a-2=4a+9是方程;②3x-6>3y+7中有两个未知数;③2x3<5未知数的次数不是一次;④x2>1未知数的次数不是一次;⑤2x+6>x是一元一次不等式;
故选:A.
【点睛】
本题考查了一元一次不等式的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是1,并且不等式的两边都是整式的不等式叫一元一次不等式.
6、C
【解析】
【分析】
根据不等式解集的表示方法依次判断.
【详解】
解:在数轴上表示不等式的解集的是C,
故选:C.
【点睛】
此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法是解题的关键.
7、C
【解析】
【分析】
根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
【详解】
解:条线段的长分别是4,4,m,若它们能构成三角形,则
,即
又为整数,则整数m的最大值是7
故选C
【点睛】
本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
8、D
【解析】
【分析】
先两边除以,然后根据X的范围分类讨论即可
【详解】
解:把不等式两边同时除以,
得:,
∵当X>0时,Y>X;
当X<0时,Y<X;
∴无法判断X、Y的大小关系,
故选D.
【点睛】
本题考查了不等式的性质的应用,解题的关键是熟练掌握不等式的性质.
9、D
【解析】
【分析】
根据不等式的基本性质对各选项进行逐一分析即可.
【详解】
解:A.∵m>n,
∴m+4>n+4,故该选项正确,不符合题意;
B.∵m>n,
∴,故该选项正确,不符合题意;
C.∵m>n,
∴,故该选项正确,不符合题意;
D.∵m>n,
∴,故该选项错误,符合题意;
故选:D.
【点睛】
本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.
10、B
【解析】
【分析】
先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.
【详解】
解:,
移项得:
解得:
所以原不等式得解集:.
把解集在数轴上表示如下:
故选B
【点睛】
本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.
二、填空题
1、
【解析】
【分析】
求得第一个不等式的解集,借助数轴即可求得m的取值范围.
【详解】
解不等式,得x>2
因不等式组无解,把两个不等式的解集在数轴上表示出来如下:
观察图象知,当m≤2时,满足不等式组无解
故答案为:
【点睛】
本题考查了根据不等式组解的情况确定参数的取值范围,借助数轴数形结合是关键.
2、x<﹣3
【解析】
【分析】
根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.
【详解】
解:根据“同小取小”,不等式组的解集是x<﹣3.
故答案为:x<﹣3.
【点睛】
本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
3、 去分母 去括号 移项 合并同类项 系数化1
【解析】
略
4、
【解析】
【分析】
根据去括号、移项、合并同类项、系数化为1即可求出不等式的解集.
【详解】
解:
去括号得,
移项得,
合并得,
系数化为1,得:
故答案为:
【点睛】
此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解集.
5、
【解析】
【详解】
解:“的4倍减去的差是正数”,用不等式表示为:
故答案为:
【点睛】
本题考查的是列不等式,理解题意,体现准确的运算关系与运算顺序是列式的关键,注意正数即是大于0的数.
三、解答题
1、 (1)A型公交车每辆45万元,B型公交车每辆60万元;
(2)80
【解析】
【分析】
(1)设A型公交车每辆x万元,B型公交车每辆y万元,由题意:购买1辆A型公交车和2辆B型公交车需要165万元,2辆A型公交车和3辆B型公交车需要270万元.列出二元一次方程组,解方程组即可;
(2)设该公司购买m辆A型公交车,则购买(140-m)辆B型公交车,由题意:购买A型公交车的总费用不高于B型公交车的总费用,列出一元一次不等式,解不等式即可.
(1)
解:设A型公交车每辆x万元,B型公交车每辆y万元,
由题意得:,
解得:,
答:A型公交车每辆45万元,B型公交车每辆60万元;
(2)
解:设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,
由题意得:45m≤60(140﹣m),
解得:m≤80,
答:该公司最多购买80辆A型公交车.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
2、﹣1.5<x≤1,图见解析.
【解析】
【分析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.
【详解】
解:
解不等式3x﹣4<5x﹣1,得:x>﹣1.5,
解不等式,得:x≤1,
则不等式组的解集为﹣1.5<x≤1,
将其解集表示在数轴上如下:
【点睛】
本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.
3、 (1)类书的单价为22元,类书的单价为30元
(2)学校共有3种购买方案:
方案1:购买类书15本,类书19本;
方案2:购买类书16本,类书18本;
方案3:购买类书17本,类书17本.
【解析】
【分析】
(1)设A类书的单价为x元,B类书的单价为y元,根据“购买1本A类书和2本B类书共需82元;购买2本A类书和1本B类书共需74元”,即可得出关于x,y的二元一次方程组,解之即可得出A,B两类书的单价;
(2)设购买A类书m本,则购买B类书(34-m)本,根据“购买A类书的数量不高于B类书的数量,购买书籍的花费不得高于900元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案.
(1)
解:设类书的单价为元,类书的单价为元,
依题意得:,解得:.
答:类书的单价为22元,类书的单价为30元.
(2)
解:设购买类书本,则购买类书本,
依题意得:,解得:.
又∵为正整数,
∴可以为15,16,17,
∴该学校共有3种购买方案,分别如下所示:
方案1:购买类书15本,类书19本;
方案2:购买类书16本,类书18本;
方案3:购买类书17本,类书17本.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
4、 (1)①x>3或x<−3;②−<x<
(2)x>5或x<−3.
【解析】
【分析】
(1)根据题意即可得;
(2)将2|x−1|的数字因数2化为1后,根据以上结论即可得.
(1)
解:①由探究发现,|x|>3的解集是x>3或x<−3;
故答案为:x>3或x<−3;
②由探究发现,|x|<的解集是−<x<.
故答案为:−<x<.
(2)
解:2|x−1|+1>9,
2|x−1|>9−1,
2|x−1|>8,
|x−1|>4,
∴|x−1>4的解集可表示为x−1>4或x−1<−4,
∴2|x−1|+1>9的解集为:x>5或x<−3.
【点睛】
本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.
5、 (1),作图见解析
(2),作图见解析
【解析】
【分析】
(1)按照解一元一次不等式的步骤解不等式即可.
(2)将一元一次不等式组看作两个一元一次不等式,得出两个解集后取公共部分即可.
(1)
原式为
去括号得
合并同类项、移向得
故不等式的解集为
数轴上解集范围如图所示
(2)
原式为
①式为
去括号得
合并同类项、移向得
化系数为1得
②式为
去分母得
合并同类项、移向得
化系数为1得
故方程组的解集为
数轴上解集范围如图所示
【点睛】
本题考查了解一元一次不等式组以及用数轴表示不等式解集,解一元一次不等式的步骤为去括号、去分母、移向、合并同类项、化系数为1.解一元一次不等式组的一般步骤,第一步:分别求出不等式组中各不等式的解集;第二步:将各不等式的解集在数轴上表示出来;第三步:在数轴上找出各不等式的解集的公共部分,这个公共部分就是不等式组的解集.用数轴表示不等式的解集时要“两定”:一定边界点,二定方向. 在定边界点时,若符号是“≤”或“≥”,边界点为实心点;若符号是“<”或“>”,边界点为空心圆圈.在定方向时,相对于边界点而言,“小于向左,大于向右”.
冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题: 这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题,共18页。试卷主要包含了对有理数a,b定义运算,不等式的最大整数解是等内容,欢迎下载使用。
初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题: 这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题,共17页。试卷主要包含了对有理数a,b定义运算,不等式﹣2x+4<0的解集是,不等式的最小整数解是,若m<n,则下列各式正确的是等内容,欢迎下载使用。
数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题: 这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共17页。试卷主要包含了下列命题中,假命题是,若,则下列式子一定成立的是,现有甲,不等式的最大整数解是,设m为整数,若方程组的解x等内容,欢迎下载使用。