数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试练习,共18页。试卷主要包含了不等式的最小整数解是,关于x的方程3﹣2x=3等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列不等式是一元一次不等式的是( )A. B. C. D.2、若a<0,则关于x的不等式|a|x>a的解集是( )A.x>1 B.x>﹣1 C.x>1 D.x>﹣13、某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是( )A. B.C. D.4、若关于x的不等式组无解,则m的取值范围是( )A. B. C. D.5、不等式的最小整数解是( )A. B.3 C.4 D.56、若不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,则m的取值范围是( )A.m>- B.m<- C.m<- D.m>-7、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.28、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.9、x=-1不是下列哪一个不等式的解( )A.2x+1≤-3 B.2x-1≥-3 C.-2x+1≥3 D.-2x-1≤310、如果a<b,那么下列不等式中不成立的是( )A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的3x﹣6≤2+x非负整数解共有 ___.2、已知且,则最小值为___________.3、不等式组的解集是_______.4、3x与2y的差是非正数,用不等式表示为_________.5、某种商品的进价为500元,售价为750元,由于换季,商店准备打折销售,但要保持该商品的利润率不低于20%,那么最多可以打______折.三、解答题(5小题,每小题10分,共计50分)1、解不等式:2、(1)解方程组(2)解不等式组3、已知关于x的不等式①x+a>7的解都能使不等式②成立,求a的取值范围.4、解不等式:,并把它的解集在数轴上表示出来,再写出最大负整数解.5、已知:在数轴上,原点为O,点A、点B表示的数分别为a、b(a<b),点P为数轴上任意一点,若PA≤PB,则点P称为线段AB的关联点.现在点A、点B表示的数分别为−2和4,请解决以下四个问题:(1)点C、点D和点E分别表示−1、5和9,在这三个点中是线段AB关联点的是______;(2)点P表示的数为x,若点P是线段AB的关联点,则x的最大值为______;(3)点M从A点出发沿数轴向右运动,请问点B能否成为线段AM的关联点,若能,请求出点M表示的数m的最小值(不计点A和点M重合的时刻).(4)点M从A点出发,以每秒3个单位长度沿数轴向右运动,同时点N从点B出发,以每秒2个单位长度,沿数轴向右运动,设运动时间为t,请问点B能否成为线段MN点的关联点,若能,请求出t的最小值;若不能,请说明理由. -参考答案-一、单选题1、B【解析】【分析】根据含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式进行分析即可.【详解】解:A、未知数的次数含有2次,不是一元一次不等式,故此选项不合题意;B、是一元一次不等式,故此选项符合题意;C、是分式,故该不等式不是一元一次不等式,故此选项不合题意;D、含有两个未知数,不是一元一次不等式,故此选项不合题意;故选:B.【点睛】此题主要考查了一元一次不等式定义,关键是掌握一元一次不等式的定义.2、B【解析】【分析】由a<0,解得|a|=-a,再据得到一元一次不等式-ax>a,再根据不等式的性质解题即可.【详解】解:因为a<0,所以|a|=-a,所以|a|x>a-ax>a-x<1x>-1故选:B.【点睛】本题考查解一元一次不等式、绝对值的性质等知识,是基础考点,掌握相关知识是解题关键.3、C【解析】【分析】由至多得到小于等于,结合大于得到答案.【详解】解:由题意得,攀攀的年龄大于1且小于等于3,故选:C.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握大于、大于等于、小于等于的不同表示方法是解题的关键.4、D【解析】【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围.【详解】解:解不等式得:,解不等式得:,∵不等式组无解,∴,解得:,故选:D.【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.5、C【解析】【分析】先求出不等式解集,即可求解.【详解】解: 解得: 所以不等式的最小整数解是4.故选:C.【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.6、C【解析】【分析】求出不等式-1≤2-x的解,求出不等式3(x−1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【详解】解不等式-1≤2-x,得:x≤,解不等式3(x-1)+5>5x+2(m+x),得:x<,∵不等式-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)成立,∴>,解得:m<-.故选:C【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.7、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.8、C【解析】【分析】利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.【详解】解: a<b, 故A不符合题意,C符合题意; 故B不符合题意;当时,满足 而 故D不符合题意;故选C【点睛】本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.9、A【解析】【分析】解出各个不等式,然后检验-1是否在解集内,就可以进行判断.【详解】解:A:2x+1≤-3,解得x≤-2,-1不在解集内,故符合题意.B:2x-1≥-3,解得x≥-1,-1在解集内,故不符合题意.C:-2x+1≥3中,解得x≤-1,-1在解集内,故不符合题意.D:-2x-1≤3中,解得x≥-2,-1在解集内,故不符合题意.故选:A.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤.10、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.二、填空题1、5【解析】【分析】不等式移项、合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】3x﹣6≤2+x,3x﹣x≤2+6,2x≤8,解得:x≤4,则不等式的非负整数解为0,1,2,3,4共5个.故答案为5.【点睛】此题考查了一元一次不等式的整数解,熟练掌握运算步骤是解本题的关键.2、##0.5【解析】【分析】由a<0,且2|a|x≤3a,得-2ax≤3a,解得x≤,再根据x的取值范围将所求式子化简,求出式子的最小值.【详解】解:∵a<0,2|a|x≤3a,∴-2ax≤3a,两边同除以-a,得2x≤-3,得x≤,当x≤时,,由x≤得:.故答案为:.【点睛】本题考查了绝对值即一元一次不等式的运用.关键是根据已知条件解不等式求x的取值范围.3、x<﹣3【解析】【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.【详解】解:根据“同小取小”,不等式组的解集是x<﹣3.故答案为:x<﹣3.【点睛】本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4、3x-2y≤0【解析】【分析】根据题意直接利用非正数的定义进而分析即可得出不等式.【详解】解:3x与2y的差是非正数,用不等式表示为3x-2y≤0.故答案为:3x-2y≤0.【点睛】本题主要考查由实际问题抽象出一元一次不等式,正确理解相关定义是解题的关键.5、八##8【解析】【分析】设该商品打x折销售,根据利润=售价-进价,结合要保持利润不低于20%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设该商品打x折销售,依题意得:750×-500≥500×20%,解得:x≥8.故答案为:八.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三、解答题1、x<-1【解析】【分析】先根据多项式与多项式的乘法法则化简,再根据解不等式的步骤求解.【详解】解:∵∴x2-7x+3x-21+8>x2-x+5x-5,∴x2-7x+3x-x2+x-5x>-5-8+21,∴-8x>8,∴x<-1.【点睛】本题考查了多项式与多项式的乘法法则,以及一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.2、(1)方程组的解为:;(2)不等式组的解集为:.【解析】【分析】(1)根据二元一次方程组的解法:加减消元法求解即可得;(2)先求出各个不等式的解集,然后根据“同大取大,同小取小,小大大小中间找,大大小小无处找”即可确定不等式组的解集.【详解】解:(1),得:,解得:,将代入②可得:,∴方程组的解为:;(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】题目主要考查解二元一次方程组及不等式组的方法,熟练掌握求解方法是解题关键.3、【解析】【分析】先求出不等式①②的解集,然后根据关于x的不等式①的解都能使不等式②成立得出,求解即可得.【详解】解:解不等式①得:,解不等式②得:,∵关于x的不等式①的解都能使不等式②成立,∴,解得:.【点睛】题目主要考查求不等式的解集,理解题意,熟练掌握解不等式的方法是解题关键.4、,见解析,不等式的最大负整数解为【解析】【分析】先去分母,移项合并同类项求出不等式的解集,再根据数轴上数的特点表示不等式的解集及确定整数解.【详解】解:,去分母得:,移项合并得:,则不等式的最大负整数解为.【点睛】此题考查了解一元一次不等式,利用数轴表示不等式的解集,以及确定不等式的整数解,正确掌握解一元一次不等式的解法是解题的关键.5、 (1)C点(2)1(3)m的最小值为10(4)能,t的最小值为1.2.【解析】【分析】(1)根据关联点的定义进行解答便可;(2)P点在AB之间比P点在A点左边时的x值要大,再根据定义列出不等式解答便可;(3)B点在AM之间,再根据定义列出不等式解答便可;(4)用t的代数式表示M和N点表示的数,再根据关联点列出不等式组,结合定义列出方程,解答便可.(1)解:∵CA=-1-(-2)=1,CB=4-(-1)=5,∴CA<CB,∴C点是线段AB的关联点;∵DA=5-(-2)=7,DB=5-4=1,∴DA>DB,∴D点不是线段AB的关联点;∵EA=9-(-2)=11,EB=9-4=5,∴EA>EB,∴E点不是线段AB的关联点;故答案为:C点;(2)解:∵点A,点B表示的数分别为-2,4,点P表示的数为x,若点P是线段AB的关联点,∴x-(-2)≤4-x,∴x≤1,∴x的最大值为1,故答案为:1.(3)解:∵点A,点B表示的数分别为-2,4,点M表示的数为m,若点B是线段AM的关联点,∴4-(-2)≤m-4,∴m10,∴m的最小值为10;(4)解:点M表示的数为3t-2,点N表示的数为2t+4,∵点B为线段MN点的关联点,∴4-(3t-2)≤2t+4-4,∴t1.2,∴t的最小值为1.2.【点睛】本题是一个新定义题,考查了一元一次不等式,数轴上两点之间的距离,关键要读懂题意,根据新定义把新知识迁移到我们熟悉的知识来解题,主要是考查学生阅读能力,自学能力,模仿例题的能力,拓展知识的能力,是中考的常见类型,
相关试卷
这是一份数学冀教版第九章 三角形综合与测试同步测试题,共23页。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共16页。试卷主要包含了若,那么下列各式中正确的是,,那么,如果,那么下列结论中正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后作业题,共18页。试卷主要包含了不等式组的最小整数解是,下列不等式是一元一次不等式的是等内容,欢迎下载使用。