冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试精练
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试精练,共18页。试卷主要包含了不等式4x-8≤0的解集是,现有甲,设m为整数,若方程组的解x等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列不是不等式5x-3<6的一个解的是( )A.1 B.2 C.-1 D.-22、已知关于x的不等式组无解,则a的取值范围是( )A.a≤﹣2 B.a>3 C.﹣2<a<3 D.a<﹣2或a>33、若x<y成立,则下列不等式成立的是( )A.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣2<y﹣24、不等式4x-8≤0的解集是( )A.x≥-2 B.x≤-2C.x≥2 D.x≤25、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.96、现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车( )辆.A.5 B.6 C.7 D.87、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y8、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.79、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.10、下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有( )个.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直接写出下列不等式的解集: x+3>6的解集是______;2x<8的解集是______;x-2>0的解集是______.2、如果a>b,那么﹣2a___﹣2b.(填“>”或“<”)3、若x>y,试比较大小:﹣3x+5 ______﹣3y+5.(填“>”、“<”或“=”)4、 “寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A礼盒混装2千克广味香肠,2千克川味香肠;B礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超巿混装A、B两种礼盒的总成本最多为______元.5、全球棉花看中国,中国棉花看新疆.新疆长绒棉是世界顶级棉花,品质优,产量大,常年供不应求.某超市为了支持新疆棉花,在“五一节”进行促销活动,将新疆棉制成的A、B、C三种品牌毛巾混装成甲、乙、丙三种礼包销售,其中甲礼包包含1条A品牌毛巾、2条B品牌毛巾:乙礼包包含2条A品牌毛巾,2条B品牌毛巾,3条C品牌毛巾:丙礼包包含2条A品牌毛巾,4条C品牌毛巾,每个礼包的售价等于礼包内各条毛巾售价之和,5月1日当天,超市对A、B、C三个品牌毛巾的售价分别打8折、7折、5折销售,5月2日恢复原价,小明发现5月1日一个甲礼包的售价等于5月2日﹣个乙礼包售价的40%,5月1日一个乙礼包的售价比5月2日一个丙礼包售价少1.2元,若A、B、C三个品牌的毛巾的原价都是正整数,且B品牌毛巾的原价不超过15元,则小明在5月1日购买的一个甲礼包和一个乙礼包,应该付 _____元.三、解答题(5小题,每小题10分,共计50分)1、对于一个三位正整数n,如果n满足:它的百位数字、十位数字之和与个位数字的差等于6,那么称这个数n为“开心数”,例如:n1=936,∵9+3﹣6=6,∴936是“开心数”:n2=602,∵6+0﹣2=4≠6,∴602不是“开心数”.(1)判断666、785是否为“开心数”?请说明理由;(2)若将一个“开心数”m的个位数的两倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数s(例如;若m=543,则s=654),若s也是一个“开心数”,求满足条件的所有m的值2、已知关于x的不等式①x+a>7的解都能使不等式②成立,求a的取值范围.3、2020年春节前夕,突如其来的新型冠状病毒肺炎疫情造成口罩紧缺,为满足社会需求,某工厂现需购买一批材料,用于生产甲、乙两种型号的口罩,已知生产乙型口罩所需的材料费比生产甲型口罩所需的材料费每件多100元,且生产甲型口罩40件和生产乙型口罩30件需购买材料的费用相同.(1)求生产甲、乙两种型号口罩所需的材料费每件各多少元?(2)若工厂购买这批材料的资金不超过135000元,且需生产两种口罩共400件,求至少能生产甲种口罩多少件?4、沙坪坝区某街道为积极响应“开展全民义务植树40周年”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共70棵,且甲种树木单价、乙种树木单价每棵分别为90元,80元,共用去资金6000元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6500元,求a的最大整数值.5、(1)解不等式:5x+3≥2(x+3).(2)解不等式2x-1>. -参考答案-一、单选题1、B【解析】略2、B【解析】【分析】根据大大小小无解找,确定a的值即可.【详解】∵关于x的不等式组无解,∴a>3,故选:B.【点睛】本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.3、D【解析】【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;故选:D.【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.4、D【解析】【分析】根据题意先移项,再把x的系数化为1即可得出答案.【详解】解:不等式4x-8≤0,移项得,4x≤8,把x的系数化为1得,x≤2.故选:D.【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.5、C【解析】【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6、B【解析】【分析】现用甲,乙两种运输车将46吨抗旱物资运往灾区,此题的等量关系是:甲种车运输物资数+乙种车运输物资数≥46吨.设甲种运输车至少应安排x辆,根据不等关系就可以列出不等式,求出x的值.【详解】解:设乙种车安排了x辆,4x+5×5≥46解得x≥.因为x是正整数,所以x最小值是6.则乙种车至少应安排6辆.故选:B.【点睛】本题主要考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,理解汽车的载重量与货物的数量之间的关系是解决本题的关键.7、C【解析】【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.8、B【解析】【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.10、B【解析】【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0; ③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.二、填空题1、 x>3 x<4 x>2【解析】略2、<【解析】【分析】根据不等式的性质得出即可.【详解】解:∵a>b,∴﹣2a<﹣2b,故答案为:<【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3、<【解析】【分析】利用不等式的性质进行判断.【详解】解:∵x>y,∴﹣3x<﹣3y,∴﹣3x+5<﹣3y+5.故答案为:<.【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、36250【解析】【分析】设每千克川味香肠的成本为元,每千克广味香肠的成本为元,先根据利润率的计算公式可得,从而可分别求出每个礼盒的实际成本和核算出的成本,再设礼盒的数量为个,礼盒的数量为个,根据“核算出的成本比实际成本少了500元”可得,从而可得,然后结合求出超巿混装两种礼盒的总成本的最大值即可得.【详解】解:设每千克川味香肠的成本为元,每千克广味香肠的成本为元,由题意得:,即,则每个礼盒的实际成本和核算出的成本均为(元),每个礼盒的实际成本为(元),核算出的成本为(元),设礼盒的数量为个,礼盒的数量为个,由题意得:,即,联立,解得,则超巿混装两种礼盒的总成本为,即超巿混装两种礼盒的总成本最多为36250元,故答案为:36250.【点睛】本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.5、42.8【解析】【分析】根据题意可设A品牌毛巾原售价为x元,B品牌毛巾原售价为y元,C品牌毛巾原售价为z元,同时可得出5月1日各品牌毛巾打折后的价格,根据题意,可列出关于x,y,z的两个三元一次方程,经过化简,可得到三者之间的关系,然后利用B品牌毛巾售价不超过15元,且各毛巾是价格均为整数,可得三种品牌毛巾的价格,代入5月1日打折后的礼包价格求解即可.【详解】设A品牌毛巾原售价为x元,B品牌毛巾原售价为y元,C品牌毛巾原售价为z元,则5月1日,A品牌毛巾售价为0.8x元,B品牌毛巾售价为0.7y元,C品牌毛巾原售价为0.5z元.则5月1日打折后礼包售价分别为:甲礼包:(0.8x+1.4y)元;乙礼包:(1.6x+1.4y+1.5z)元;丙礼包:(1.6x+2z)元;5月2日礼包恢复原价后售价分别为:甲礼包:(x+2y)元;乙礼包:(2x+2y+3z)元;丙礼包:(2x+4z)元;根据题意可得:,解得,∵B品牌毛巾售价不超过15元,且各毛巾是价格均为整数,∴0<y≤15,∴0<2z≤15,,∵为正整数∴z只能取4,∴,则5月1日购买甲、乙礼包花费为:0.8x+1.4y+1.6x+1.4y+1.5z=2.4x+2.8y+1.5z,代入可得:2.4×6+2.8×8+1.5×4=42.8(元),故答案为:42.8.【点睛】本题主要考查三元一次方程应用及根据不等式关系确定未知数的取值,对三元一次方程组的化简及利用不等式求解是题目难点.三、解答题1、 (1)666是“开心数”,785不是“开心数”,理由见解析(2)464和532【解析】【分析】(1)根据“开心数”的定义即可得;(2)设的百位数字为,十位数字为,个位数字为,从而可得的百位数字为,十位数字为,个位数字为,再根据“开心数”的定义列出等式,将都用表示出来,然后根据求出的取值范围,最后根据为正整数进行分析即可得.(1)解:666是“开心数”,785不是“开心数”,理由如下:,是“开心数”,,不是“开心数”.(2)解:设的百位数字为,十位数字为,个位数字为,则的百位数字为,十位数字为,个位数字为,和都是“开心数”,,解得,,,,解得,又为正整数,所有符合条件的取值为,当时,,则,当时,,则,综上,满足条件的所有的值为464和532.【点睛】本题考查了一元一次不等式组的应用、三元一次方程组的应用等知识点,掌握理解“开心数”的定义是解题关键.2、【解析】【分析】先求出不等式①②的解集,然后根据关于x的不等式①的解都能使不等式②成立得出,求解即可得.【详解】解:解不等式①得:,解不等式②得:,∵关于x的不等式①的解都能使不等式②成立,∴,解得:.【点睛】题目主要考查求不等式的解集,理解题意,熟练掌握解不等式的方法是解题关键.3、 (1)甲为300元,乙为400元.(2)250件【解析】【分析】(1)设生产每件甲型口罩所需的材料费为x元,则生产每件乙型口罩所需的材料费为(x+100)元,然后根据生产甲型口罩40件和生产乙型口罩30件需购买材料的费用相同,列出方程求解即可;(2)设生产甲型口罩m件,则生产乙型口罩(400﹣m)件,然后根据工厂购买这批材料的资金不超过135000元,列出不等式求解即可.(1)解:设生产每件甲型口罩所需的材料费为x元,则生产每件乙型口罩所需的材料费为(x+100)元,依题意得:40x=30(x+100),解得:x=300,∴x+100=300+100=400.答:生产每件甲型口罩所需的材料费为300元,生产每件乙型口罩所需的材料费为400元.(2)解:设生产甲型口罩m件,则生产乙型口罩(400﹣m)件,依题意得:300m+400(400﹣m)≤135000,解得:m≥250.答:至少能生产甲型口罩250件.【点睛】本题主要考查了一元一次方程和一元一次不等式的应用,解题的关键在于能够准确理解题意列出式子求解.4、 (1)甲种树木购买了40棵,乙种树木购买了30棵(2)a的最大值为25【解析】【分析】(1)设甲种树木购买了x棵,乙种树木购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共70棵,共用去资金6000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总费用=单价×数量结合总费用不超过6500元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【小题1】解:设甲种树木购买了x棵,乙种树木购买了y棵,根据题意得:,解得:,答:甲种树木购买了40棵,乙种树木购买了30棵.【小题2】根据题意得:90×(1+a%)×40+80×(1-a%)×30≤6500,解得:a≤25.答:a的最大值为25.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.5、(1)x≥1;(2)x>1【解析】【分析】(1)先去括号,然后移项、合并同类项、系数化1,即可求解;(2)先去分母,然后移项、合并同类项、系数化1,即可求解.【详解】(1)5x+3≥2(x+3),去括号得:5x+3≥2x+6,移项得:5x-2x≥6-3,合并同类项得:3x≥3,解得:x≥1.(2),去分母,得4x-2>3x-1,移项,得:4x-3x>2-1,合并同类项,得:x>1.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化1.
相关试卷
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试习题,共19页。试卷主要包含了下列说法中不正确的个数有等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后测评,共17页。试卷主要包含了下列四个说法,若,那么下列各式中正确的是,下列说法正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题,共18页。试卷主要包含了设m为整数,若方程组的解x,若m<n,则下列各式正确的是等内容,欢迎下载使用。