冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共18页。试卷主要包含了下列各数中,是不等式的解的是,已知x=1是不等式等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列式子中,是一元一次不等式的有( )①3a-2=4a+9;②3x-6>3y+7;③2x3<5;④x2>1;⑤2x+6>x.A.1个 B.2个 C.3个 D.4个2、已知三角形两边长分别为7、10,那么第三边的长可以是( )A.2 B.3 C.17 D.53、若m<n,则下列各式正确的是( )A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n24、下列各数中,是不等式的解的是( )A.﹣7 B.﹣1 C.0 D.95、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤16、若整数m使得关于x的不等式组 有且只有三个整数解,且关于x,y的二元一次方程组 的解为整数(x,y均为整数),则符合条件的所有m的和为( )A.27 B.22 C.13 D.97、在数轴上表示某不等式组的解集,如图所示,则这个不等式组可能是( )A. B. C. D.8、把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是( )A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣29、不等式的解集在数轴上表示正确的是 ( )A. B.C. D.10、已知a>b,下列变形一定正确的是( )A.3a<3b B.4+a>4﹣b C.ac2>bc2 D.3+2a>3+2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组 的解集是________.2、直接写出下列不等式的解集: x+3>6的解集是______;2x<8的解集是______;x-2>0的解集是______.3、根据数量关系“x的3倍小于4”,列不等式为______.4、像156>155,155<156,x>50,这样,我们把用符号“>”或“<”连接而成的式子叫做______.像a≠2这样的式子也叫做不等式.使不等式成立的未知数的值叫做______.5、某种商品的进价为500元,售价为750元,由于换季,商店准备打折销售,但要保持该商品的利润率不低于20%,那么最多可以打______折.三、解答题(5小题,每小题10分,共计50分)1、解不等式组: ,并把解集在数轴上表示出来.2、临近春节,各大商场内虎年吉祥物、红灯笼、春联等商品需求量大增,各大工厂为应对“年货”模式,提高商品生产量以满足广大群众的需求,某工厂计划租用A、B两种型号的货车运送一批年货商品到外地进行销售,已知3辆A型货车和4辆B型货车一次可以运送850箱商品,6辆A型货车和5辆B型货车一次可以运送1400箱商品.(1)求一辆A型货车和一辆B型货车一次分别可以运送多少箱商品;(2)工厂计划租用A、B两种型号的货车共15辆,A型货车的租车费用为每辆500元,B型货车的租车费用为每辆300元,若运送的商品不少于1850箱,且租车费用小于6500元,请问工厂应该选择哪种租车方案所需费用最少,最少费用是多少元?3、已知:在数轴上,原点为O,点A、点B表示的数分别为a、b(a<b),点P为数轴上任意一点,若PA≤PB,则点P称为线段AB的关联点.现在点A、点B表示的数分别为−2和4,请解决以下四个问题:(1)点C、点D和点E分别表示−1、5和9,在这三个点中是线段AB关联点的是______;(2)点P表示的数为x,若点P是线段AB的关联点,则x的最大值为______;(3)点M从A点出发沿数轴向右运动,请问点B能否成为线段AM的关联点,若能,请求出点M表示的数m的最小值(不计点A和点M重合的时刻).(4)点M从A点出发,以每秒3个单位长度沿数轴向右运动,同时点N从点B出发,以每秒2个单位长度,沿数轴向右运动,设运动时间为t,请问点B能否成为线段MN点的关联点,若能,请求出t的最小值;若不能,请说明理由.4、利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x-7>26(2)3x<2x+15、解不等式:﹣2<. -参考答案-一、单选题1、A【解析】【分析】根据一元一次不等式的定义逐个判断即可.【详解】解:①3a-2=4a+9是方程;②3x-6>3y+7中有两个未知数;③2x3<5未知数的次数不是一次;④x2>1未知数的次数不是一次;⑤2x+6>x是一元一次不等式;故选:A.【点睛】本题考查了一元一次不等式的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是1,并且不等式的两边都是整式的不等式叫一元一次不等式.2、D【解析】【分析】根据三角形三边关系分析即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.【详解】解:设第三边长为x,由题意得:∵三角形的两边分别为7,10,∴10−7<x<10+7,解得:3<x<17,符合条件的只有D.故选:D.【点睛】本题考查了解一元一次不等式组,三角形的三边关系,掌握三角形的三边关系是解题的关键.3、C【解析】【分析】根据不等式的基本性质逐项判断即可.【详解】解:A:∵m<n,∴﹣2m>﹣2n,∴不符合题意;B:∵m<n,∴,∴不符合题意;C:∵m<n,∴﹣m>﹣n,∴1﹣m>1﹣n,∴符合题意;D: m<n,当时,m2>n2,∴不符合题意;故选:C.【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.4、D【解析】【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】解:移项得:,∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.5、A【解析】【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围.【详解】解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,∴ 且 ,即﹣4(﹣2a+2)≤0且﹣(a+2)>0,解得:a<﹣2.故选:A.【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.6、A【解析】【分析】先求出不等式组的解集为,根据不等式组有且只有三个整数解,可得 ,再解出方程组,可得,再根据x,y均为整数,可得取,即可求解.【详解】解:解不等式①,得: ,解不等式②,得: ,∴不等式的解集为,∵不等式组有且只有三个整数解,∴ ,解得: ,∵m为整数,∴ 取5,6,7,8,9,10,11,12,13,14,15,,解得: ,∴当取 时,x,y均为整数,∴符合条件的所有m的和为 .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.7、D【解析】【分析】分别解不等式求出不等式组的解集,对应数轴得到答案.【详解】解:解不等式,得x>4,解不等式2x-4<x,得x<4,解不等式x+10,解得x-1,解不等式x+10,解得x-1,∴不等式组无解,不等式组的解集为x>4,不等式组的解集为x-1,不等式组的解集为,由数轴可得不等式组的解集为,故选:D.【点睛】此题考查了求不等式组的解集,正确掌握不等式的性质求解不等式及利用数轴表示不等式的解集的方法是解题的关键.8、B【解析】【分析】观察数轴上x的范围即可得到答案.【详解】解:观察数轴可发现表示的是从-2(空心)开始向右,故该不等式的解集是,故选B.【点睛】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.9、B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:,移项得: 解得: 所以原不等式得解集:.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.10、D【解析】【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.二、填空题1、-1<x≤2【解析】【分析】先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可.【详解】解:,解①得:x≤2,解②得:x>-1,∴该不等式组的解集为-1<x≤2,故答案为:-1<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关键.2、 x>3 x<4 x>2【解析】略3、【解析】【分析】根据题意,表示出x的3倍,即可求解.【详解】解:“x的3倍小于4”,可表示为故答案为:【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.4、 不等式 不等式的解【解析】略5、八##8【解析】【分析】设该商品打x折销售,根据利润=售价-进价,结合要保持利润不低于20%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设该商品打x折销售,依题意得:750×-500≥500×20%,解得:x≥8.故答案为:八.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三、解答题1、x≤2.5,数轴见解析.【解析】【分析】先分别求出两个不等式的解集,可得不等式组的解集,再在数轴上表示出来,即可求解.【详解】解:解不等式,得:x<5,解不等式3(x+2)≥6﹣2(1﹣x),得:x≤2.5,则不等式组的解集为x≤2.5,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本步骤是解题的关键.2、 (1)1辆A型车满载时一次可运150箱,1辆B型车满载时一次可运100箱.(2)工厂应该选择租A种货车7辆,B型货车是8辆,费用为5900元.【解析】【分析】(1)设1辆A型车一次可运x箱,1辆B型车一次可运柑橘y箱,根据“用3辆A型车和4辆B型车一次可运850箱;用6辆A型车和5辆B型车一次可运1400箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A型货车m辆,B型货车(15﹣m)辆,根据题意建立不等式组求出其解可确定租车方案;再分别计算费用即可.(1)解:设1辆A型车一次可运x箱,1辆B型车一次可运y箱,依题意,得:,解得:.答:1辆A型车一次可运150箱,1辆B型车一次可运100箱.(2)解:设租用A型货车m辆,B型货车(15﹣m)辆,由题意,得,解得,,∵m为整数,∴m=7,8,9.∴有3种方案;方案一:A种货车7辆,B型货车是8辆,费用为(元);方案二:A种货车8辆,B型货车是7辆,费用为(元);方案一:A种货车9辆,B型货车是6辆,费用为(元);答:工厂应该选择租A种货车7辆,B型货车是8辆,费用为5900元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是找准数量关系,正确列出二元一次方程组和一元一次不等式组.3、 (1)C点(2)1(3)m的最小值为10(4)能,t的最小值为1.2.【解析】【分析】(1)根据关联点的定义进行解答便可;(2)P点在AB之间比P点在A点左边时的x值要大,再根据定义列出不等式解答便可;(3)B点在AM之间,再根据定义列出不等式解答便可;(4)用t的代数式表示M和N点表示的数,再根据关联点列出不等式组,结合定义列出方程,解答便可.(1)解:∵CA=-1-(-2)=1,CB=4-(-1)=5,∴CA<CB,∴C点是线段AB的关联点;∵DA=5-(-2)=7,DB=5-4=1,∴DA>DB,∴D点不是线段AB的关联点;∵EA=9-(-2)=11,EB=9-4=5,∴EA>EB,∴E点不是线段AB的关联点;故答案为:C点;(2)解:∵点A,点B表示的数分别为-2,4,点P表示的数为x,若点P是线段AB的关联点,∴x-(-2)≤4-x,∴x≤1,∴x的最大值为1,故答案为:1.(3)解:∵点A,点B表示的数分别为-2,4,点M表示的数为m,若点B是线段AM的关联点,∴4-(-2)≤m-4,∴m10,∴m的最小值为10;(4)解:点M表示的数为3t-2,点N表示的数为2t+4,∵点B为线段MN点的关联点,∴4-(3t-2)≤2t+4-4,∴t1.2,∴t的最小值为1.2.【点睛】本题是一个新定义题,考查了一元一次不等式,数轴上两点之间的距离,关键要读懂题意,根据新定义把新知识迁移到我们熟悉的知识来解题,主要是考查学生阅读能力,自学能力,模仿例题的能力,拓展知识的能力,是中考的常见类型,4、 (1)x>33,见解析(2)x<1,见解析【解析】【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x-7+7>26+7, x>33.这个不等式的解集在数轴上的表示如图: (2)3x<2x+1;解:(2)根据不等式的性质1,不等式两边减2x,不等号的方向不变,所以:3x-2x<2x+1-2x, x<1.这个不等式的解集在数轴上的表示如图: 5、x>【解析】【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可.【详解】解:不等式整理得,,去分母,得2(2x+1)-12<3(3x-2).去括号,得4x+2-12<9x-6.移项,得4x-9x<-6+12-2.合并同类项,得-5x<4,系数化为1,得x>.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
相关试卷
这是一份初中冀教版第十章 一元一次不等式和一元一次不等式组综合与测试一课一练,共17页。试卷主要包含了下列说法正确的是,若成立,则下列不等式成立的是,若,则不等式组的解集是等内容,欢迎下载使用。
这是一份初中第十章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共18页。试卷主要包含了下列各式,不等式﹣2x+4<0的解集是,下列说法正确的是,不等式组的最小整数解是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共17页。试卷主要包含了下列不等式是一元一次不等式的是等内容,欢迎下载使用。