初中数学第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题
展开
这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共17页。试卷主要包含了若成立,则下列不等式成立的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.72、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.3、在数轴上表示不等式的解集正确的是( ).A. B.C. D.4、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y5、如果不等式组的解集是,那么a的值可能是( )A. B.0 C.﹣0.7 D.16、已知关于x的不等式组无解,则a的取值范围是( )A.a≤﹣2 B.a>3 C.﹣2<a<3 D.a<﹣2或a>37、下列不等式中,是一元一次不等式的是( )A. B. C. D.8、若成立,则下列不等式成立的是( )A. B.C. D.9、若关于的方程有负分数解,关于的不等式组的解集为,则符合条件的所有整数的个数为( )A.3 B.4 C.6 D.710、下列不等式不能化成x>-2的是( )A.x+4>2 B.x-1>-3 C.-2x>-4 D.2x>-4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果关于x的不等式mx﹣2m>x﹣2的解集是x<2,那么m的取值范围是______.2、直接写出下列不等式的解集: x+3>6的解集是______;2x<8的解集是______;x-2>0的解集是______.3、像156>155,155<156,x>50,这样,我们把用符号“>”或“<”连接而成的式子叫做______.像a≠2这样的式子也叫做不等式.使不等式成立的未知数的值叫做______.4、 “x的与4的差是负数”用不等式表示:_____.5、某测试共有20道题,每答对一道得5分,每答错一道题扣1分,若小明得分要超过90分,设小明答对x道题,可列不等式 _____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组:,并求出它的所有整数解的和.2、解不等式:﹣2<.3、将二元一次方程组的解中的所有数的全体记为,将不等式(组的解集记为,给出定义:若中的数都在内,则称被包含;若中至少有一个数不在内,则称不能被包含.如,方程组的解为,记,,方程组的解为,记,,不等式的解集为,记.因为0,2都在内,所以被包含;因为4不在内,所以不能被包含.(1)将方程组的解中的所有数的全体记为,将不等式的解集记为,请问能否被包含?说明理由;(2)将关于,的方程组的解中的所有数的全体记为,将不等式组的解集记为,若不能被包含,求实数的取值范围.4、小明早上七点骑自行车从家出发,以每小时18千米的速度到距家7千米的学校上课,行至距学校1千米的地方时,自行车突然发生故障,小明只得改为步行前往学校,如果他想在7点30分赶到学校,那么他每小时步行的速度至少是多少千米?5、说出下列不等式变形的依据:(1)由x-1>2,得x>3;(2)由-2x>-4,得x<2;(3)由-x<-1,得x>2;(4)由3x<x,得2x<0. -参考答案-一、单选题1、B【解析】【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.2、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.3、C【解析】【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式的解集的是C,故选:C.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法是解题的关键.4、C【解析】【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.5、C【解析】【分析】根据不等式组解集的确定方法:大大取大可得,再在选项中找出符合条件的数即可.【详解】解:∵不等式组的解集是,∴a≤,而,故选:C.【点睛】本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.6、B【解析】【分析】根据大大小小无解找,确定a的值即可.【详解】∵关于x的不等式组无解,∴a>3,故选:B.【点睛】本题考查了不等式组的解集,熟练掌握一元一次不等式组的解集确定方法是解题的关键.7、B【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【详解】A、不等式中含有两个未知数,不符合题意;B、符合一元一次不等式的定义,故符合题意;C、没有未知数,不符合题意;D、未知数的最高次数是2,不是1,故不符合题意.故选:B【点睛】本题考查一元一次不等式的定义,掌握其定义是解决此题关键.8、C【解析】【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.9、B【解析】【分析】把a看作已知数表示出不等式组的解集,根据已知解集确定出a的范围,将a的整数解代入方程,检验方程解为负分数确定出所有a的值,即可求出积.【详解】解:解不等式,得:,解不等式,得:,不等式组的解集为,,解得,解方程得,, ∵方程有负分数解,∴,∴,∴的取值为, ∴整数的值为-3,-2,-1,0,1,2,3,把代入方程得:,即,符合题意;把代入方程得:,即,不符合题意;把代入方程得:,即,符合题意;把代入方程得:,即,不符合题意;把代入方程得:,即,符合题意;把代入方程得:,即,不符合题意;把代入方程得:,即,符合题意.符合条件的整数取值为,,1,3,故选:B.【点睛】此题考查了解一元一次不等式组,以及解一元一次方程,熟练掌握解不等式组和方程的基本技能是解本题的关键.10、C【解析】【分析】分别解不等式进行判断即可.【详解】解:A.x+4>2,两边同减4得x>-2,不符合题意;B.x-1>-3,两边同加1得x>-2,不符合题意;C.-2x>-4,两边同除以-2得x<2,符合题意;D.2x>-4,两边同除以2得x>-2,不符合题意.故选:C.【点睛】此题考查了解一元一次不等式,解题的关键是正确掌握不等式的性质计算.二、填空题1、m<1【解析】【分析】根据不等式的基本性质,两边都除以后得到,可知,解之可得.【详解】解:,移项得,,∴,∵不等式的解集为,∴,即,故答案为:.【点睛】题目主要考查不等式的性质及解不等式,熟练掌握不等式的性质是解题关键.2、 x>3 x<4 x>2【解析】略3、 不等式 不等式的解【解析】略4、x-4<0【解析】【分析】根据负数小于零列不等式解答即可.【详解】解:由题意得x-4<0,故答案为:x-4<0.【点睛】本题考查了列不等式表示数量关系,与列代数式问题相类似,首先要注意其中的运算及运算顺序,再就是要注意分清大于、小于、不大于、不小于的区别.5、5x−(20−x)>90【解析】【分析】设小明答对x道题,则答错(20−x)道题,根据小明的得分=5×答对的题目数−1×答错的题目数结合小明得分要超过90分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则答错(20−x)道题,依题意,得: 5x−(20−x)>90,故答案为:5x−(20−x)>90.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三、解答题1、不等式组的解集是-2≤x<4,和为3【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】解:,解不等式①得,x≥-2,解不等式②得,x<4,所以,不等式组的解集是-2≤x<4,所以,它的所有整数解的和是-2-1+0+1+2+3=3.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2、x>【解析】【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可.【详解】解:不等式整理得,,去分母,得2(2x+1)-12<3(3x-2).去括号,得4x+2-12<9x-6.移项,得4x-9x<-6+12-2.合并同类项,得-5x<4,系数化为1,得x>.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3、 (1)能被包含.理由见解析(2)实数的取值范围是或【解析】【分析】(1)解方程组求得方程组的解为,不等式x+1≥0的解集为x≥﹣1,2和﹣1都在D内,即可证得C能被D包含;(2)解关于x,y的方程组得到它的解为,得到E:{a+1,a﹣l},解不等式组得它的解集为1≤x<4,根据题意得出a﹣1<1或a+1≥4,解得a<2或a≥3.(1)能被包含.理由如下:解方程组得到它的解为,,,不等式的解集为,,和都在内,能被包含;(2)解关于,的方程组得到它的解为,,,解不等式组得它的解集为,,不能被包含,且,或,或,所以实数的取值范围是或.【点睛】本题考查了新定义,解二元一次方程组和一元一次不等式(组),理解被包含的定义是解题关键,属于中档题.4、小明每小时步行的速度至少是6千米.【解析】【分析】设小明步行的速度为x千米/时,利用路程=速度×时间,结合小明想在7点30分之前赶到学校,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设小明步行的速度为x千米/时,依题意得:(7-1)+(-)x≥7,解得:x≥6.答:每小时步行的速度至少是6千米.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5、 (1)见解析(2)见解析(3)见解析(4)见解析【解析】【分析】(1)根据等式两边加上(或减去)同一个数,不等号方向不变求解;(2)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;(3)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;(4)根据等式两边加上(或减去)同一个含有字母的式子,不等号方向不变求解.(1)解:由x-1>2,得x>3,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)解:由-2x>-4,得x<2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)解:由-x<-1,得x>2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(4)解:由3x<x,得2x<0,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.【点睛】本题主要考查了不等式的性质,正确掌握不等式的性质是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习,共18页。试卷主要包含了设m为整数,若方程组的解x,对有理数a,b定义运算等内容,欢迎下载使用。
这是一份初中第十章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共19页。试卷主要包含了不等式4x-8≤0的解集是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题,共16页。试卷主要包含了,那么,下列不等式不能化成x>-2的是等内容,欢迎下载使用。