数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习
展开
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时练习,共19页。试卷主要包含了不等式的解集为等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、,那么( )A. B. C. D.无法确定2、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<03、若,那么下列各式中正确的是( )A. B.C. D.4、若x<y,则下列不等式中不成立的是( )A.x-5<y-5 B.x<y C.x-y<0 D.-5x<-5y5、不等式的解集为( )A. B. C. D.6、若关于的一元一次不等式组的解集为,且关于的方程的解为非负整数,则符合条件的所有整数的和为( )A.2 B.7 C.11 D.107、若x<y成立,则下列不等式成立的是( )A.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣2<y﹣28、已知a,b都是实数,且a<b,则下列不等式的变形正确的是( )A.a﹣1>b﹣1 B.﹣a+2<﹣b+2 C.3a<3b D.9、关于x的一元一次不等式的解集在数轴上表示为( )A. B.C. D.10、若m<n,则下列各式正确的是( )A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、像这样,关于同一未知数的两个一元一次不等式合在一起,就组成一个__________.2、定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式﹣3⊕x<15的解为 _____.3、中午放学后,有a个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.4、不等式组 的解集是________.5、已知关于,的方程组,其中,给出下列命题:①当时,,的值互为相反数;②是方程组的解;③当时,方程组的解也是方程的解;④若,则.其中正确命题的序号是 __.(把所有正确命题的序号都填上)三、解答题(5小题,每小题10分,共计50分)1、某乒乓球馆将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价200元,乒乓球每盒定价40元.经洽谈后,甲商店每买一副球拍赠一盒乒乓球;乙商店全部按定价的9折优惠.该球馆需买球拍5副,乒乓球若干盒(大于5盒).(1)如果购买5副球拍和6盒乒乓球,则在甲商店购买需花费 元,在乙商店购买需花费 元;(2)当购买乒乓球多少盒时,在两家商店花费金额一样;(3)当购买乒乓球多少盒时,在乙商店购买划算.2、解不等式组.3、求不等式组:的最大整数解.4、如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们定义这个不等式为绝对值不等式,小明在课外小组活动时探究发现:①|x|>a(a>0)的解集是x>a或x<﹣a;②|x|<a(a>0)的解集是﹣a<x<a.根据小明的发现,解决下列问题:(1)请直接写出下列绝对值不等式的解集;①|x|>3的解集是 ②|x|<的解集是 .(2)求绝对值不等式2|x﹣1|+1>9的解集.5、解不等式组. -参考答案-一、单选题1、D【解析】【分析】先两边除以,然后根据X的范围分类讨论即可【详解】解:把不等式两边同时除以,得:,∵当X>0时,Y>X;当X<0时,Y<X;∴无法判断X、Y的大小关系,故选D.【点睛】本题考查了不等式的性质的应用,解题的关键是熟练掌握不等式的性质.2、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.3、C【解析】【分析】根据不等式的性质判断.【详解】解:∵,∴a+1>b+1,故选项A错误;∵,∴-a<-b,故选项B错误;∵,∴,故选项C正确;∵,∴,故选项D错误;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.4、D【解析】【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x<y,∴x-5<y-5,故不符合题意; B. ∵x<y,∴,故不符合题意; C. ∵x<y,∴x-y<0,故不符合题意; D. ∵x<y,∴,故符合题意;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.5、D【解析】【分析】首先根据一元一次不等式的一般步骤,对其移项,合并同类项,将系数化为1即可得出答案.【详解】移项得:,合并同类项得:,将系数化为1得:.故选:D.【点睛】本题考查了解一元一次不等式的知识,熟练掌握解不等式的一般步骤是解题的关键.6、B【解析】【分析】先解关于的一元一次不等式组,再根据其解集是,得小于5;再解方程,根据其有非负整数解,得出的值,再求积即可.【详解】解:由,得:,由,得:,不等式组的解集为,,解得;解关于的方程得:,方程的解为非负整数,或3或6或9,解得或2或3.5或5,所以符合条件的所有整数的和,故选:B.【点睛】此题考查了解一元一次不等式组及一元一次方程的解,熟练掌握各自的解法是解本题的关键.7、D【解析】【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式x<y的两边都乘﹣1,不等号的方向改变,即﹣x>﹣y,不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,故此选项不符合题意;B、不等式x<y的两边都乘4,不等号的方向不变,即4x<4y,原变形错误,故此选项不符合题意;C、不等式x<y的两边都乘﹣3,不等号的方向改变,即﹣3x>﹣3y,原变形错误,故此选项不符合题意;D、不等式x<y的两边都减去2,不等号的方向不变,即x﹣2<y﹣2,原变形正确,故此选项符合题意;故选:D.【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.8、C【解析】【分析】利用不等式的基本性质可判断A,B,C,再利用特值法令可判断D,从而可得答案.【详解】解: a<b, 故A不符合题意,C符合题意; 故B不符合题意;当时,满足 而 故D不符合题意;故选C【点睛】本题考查的是利用不等式的基本性质判断变形是否正确,掌握“不等式的基本性质与特值法的运用”是解本题的关键.9、B【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项,系数化为1求得不等式的解集,进而在数轴上表示即可得出答案.【详解】解:,移项得:,合并得:,解得:,在数轴上表示为:故选:B.【点睛】本题考查解一元一次不等式,熟练掌握一元一次不等式解题步骤,移项、合并同类项、把x系数化为1是解题的关键.10、C【解析】【分析】根据不等式的基本性质逐项判断即可.【详解】解:A:∵m<n,∴﹣2m>﹣2n,∴不符合题意;B:∵m<n,∴,∴不符合题意;C:∵m<n,∴﹣m>﹣n,∴1﹣m>1﹣n,∴符合题意;D: m<n,当时,m2>n2,∴不符合题意;故选:C.【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.二、填空题1、一元一次不等式组【解析】略2、【解析】【分析】根据题目中所给的新运算先进行化简,然后再解不等式求解即可.【详解】解:∵,,.∵,∴,∴.故答案为:.【点睛】题目主要考查整式的混合运算及解不等式,理解题中定义的新运算,熟练掌握解不等式的方法是解题关键.3、29【解析】【分析】设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,依题意得:,∴,设两个食堂同时一共开放m个配餐窗口,依题意得:15my≥a+2a+15×(x+2x),解得:m≥29.故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、-1<x≤2【解析】【分析】先求出每个一元一次不等式的解集,再求出它们公共部分的解集即可.【详解】解:,解①得:x≤2,解②得:x>-1,∴该不等式组的解集为-1<x≤2,故答案为:-1<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,正确得出公共部分的解集是解答的关键.5、①③④【解析】【分析】①先求出方程组的解,把代入求出、即可;②把代入,求出的值,再根据判断即可;③求出方程组的解,再代入方程,看看方程左右两边是否相等即可;④根据和求出,求出,再求出的范围即可.【详解】解方程组得:,①当时,,,所以、互为相反数,故①正确;②把代入得:,解得:,,此时不符合,故②错误;③当时,,,方程组的解是,把,代入方程得:左边右边,即当时,方程组的解也是方程的解,故③正确;④,,即,,,,,,故④正确;故答案为:①③④.【点睛】本题考查了解二元一次方程组,二元一次方程组的解,一元一次方程的解,解不等式组等知识点,能求出方程组的解是解此题的关键.三、解答题1、 (1)1040,1116(2)当购买乒乓球25盒时,在两家商店花费金额一样(3)当购买乒乓球大于25盒时,在乙商店购买划算【解析】【分析】(1)甲:根据买一副球拍赠一盒乒乓球可知只要付5副球拍和1盒球的金额;乙:先算所有的,再计算9折后的金额;(2)设有x盒乒乓球,然后将两个商店的需要的金额计算出来,再列出方程计算得到x的值;(3)令乙商店的金额小于甲商店的金额列出不等式,然后解不等式.【详解】解:(1)甲:∵买一副球拍赠一盒乒乓球,∴只需付5副球拍和1盒球的金额,∴需花费200×5+40×1=1040(元),乙:0.9×(200×5+40×6)=1116(元).故答案为:1040,1116.(2)设有x盒乒乓球,由题意得,甲:200×5+40(x﹣5)=800+40x(元),乙:0.9(200×5+40x)=900+36x(元),∵在两家商店花费金额一样,∴800+40x=900+36x,解得:x=25,答:当购买乒乓球25盒时,在两家商店花费金额一样.(3)由(2)得,甲店需要(800+40x)元,乙店需要(900+36x)元,∵在乙商店购买划算,∴800+40x>900+36x,解得:x>25,答:当购买乒乓球大于25盒时,在乙商店购买划算.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解题的关键是正确理解题意用含有x的式子表示甲乙两个商店所需金额.2、【解析】【分析】先分别解不等式组中的两个不等式,再确定两个不等式解集的公共部分即可.【详解】解:由①得: 由②得: 所以不等式组的解集为:【点睛】本题考查的是一元一次不等式组的解法,掌握“解一元一次不等式组的步骤”是解本题的关键.3、0【解析】【分析】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,确定不等式组的解集即可找出最大整数解.【详解】,解不等式①,得,解不等式②,得,原不等式组的解集为.则其最大整数解为0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、 (1)①x>3或x<−3;②−<x<(2)x>5或x<−3.【解析】【分析】(1)根据题意即可得;(2)将2|x−1|的数字因数2化为1后,根据以上结论即可得.(1)解:①由探究发现,|x|>3的解集是x>3或x<−3;故答案为:x>3或x<−3;②由探究发现,|x|<的解集是−<x<.故答案为:−<x<.(2)解:2|x−1|+1>9,2|x−1|>9−1,2|x−1|>8,|x−1|>4,∴|x−1>4的解集可表示为x−1>4或x−1<−4,∴2|x−1|+1>9的解集为:x>5或x<−3.【点睛】本题主要考查解一元一次不等式,解题的关键是熟练掌握一元一次不等式的基本步骤和绝对值的性质.5、【解析】【分析】分别对两个一元一次不等式进行求解,将两个不等式的解中公共的部分表示出来即可.【详解】解:∵∴,;∵∴,;∴原不等式组的解为:.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确求解出两个不等式的解.
相关试卷
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试当堂达标检测题,共18页。试卷主要包含了关于x的方程3﹣2x=3,下列变形中不正确的是,下列不等式不能化成x>-2的是等内容,欢迎下载使用。
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试同步练习题,共18页。试卷主要包含了下列不等式不能化成x>-2的是,若m<n,则下列各式正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课时作业,共15页。