冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共19页。试卷主要包含了若,那么下列各式中正确的是等内容,欢迎下载使用。
第十章一元一次不等式和一元一次不等式组达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某天,孟孟与欢欢在讨论攀攀的年龄,欢欢说:“攀攀至多3岁.”而孟孟说:“攀攀的年龄一定大于1岁.”则攀攀年龄的取值范围在数轴上表示正确的是( )A. B.C. D.2、如果a<b,那么下列不等式中不成立的是( )A.3a<3b B.-3a<-3b C.-a>-b D.3+a<3+b3、不等式4x-8≤0的解集是( )A.x≥-2 B.x≤-2C.x≥2 D.x≤24、把不等式组的解集表示在数轴上,正确的是( )A. B.C. D.5、已知a>b,下列变形一定正确的是( )A.3a<3b B.4+a>4﹣b C.ac2>bc2 D.3+2a>3+2b6、x=-1不是下列哪一个不等式的解( )A.2x+1≤-3 B.2x-1≥-3 C.-2x+1≥3 D.-2x-1≤37、若,那么下列各式中正确的是( )A. B.C. D.8、如果有理数a<b,那么下列各式中,不一定成立的是( )A.4-a>4-b B.2a<2b C.a2<ab D.a-3<b-1.9、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得( )A.5x﹣2(20﹣x)≥80 B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80 D.5x﹣2(20﹣x)<8010、下列不等式中,是一元一次不等式的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A,B,C三类疫苗,A,B,C三类疫苗每件盒数是定值.甲接种点配备A类、B类、C类疫苗分别为10件、30件、40件,乙接种点配备A类、B类、C类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A类、B类、C类疫苗分别为20件、10件、40件的总盒数为 _____盒.2、不等式的3x﹣6≤2+x非负整数解共有 ___.3、不等式2x﹣3<4x的最小整数解是____.4、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.5、 “x的与4的差是负数”用不等式表示:_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组:,并将其解集在数轴上表示出来.2、解不等式组: ,并把解集在数轴上表示出来.3、在新型冠状病毒疫情影响下,武汉医疗物资紧缺,某机构派甲、乙两种运输车共10辆.已知甲种运输车载重,乙种运输车载重,运往武汉的救援物资不少于,则甲种运输车至少应安排多少辆?4、定义:点C在线段AB上,若点C到线段AB两个端点的距离成二倍关系时,则称点C是线段AB的闭二倍关联点.(1)如图,若点A表示数-1,点B表示的数5,下列各数-3,1,3所对应的点分别为,,,则其中是线段AB的闭二倍关联点的是 ;(2)若点A表示的数为-1,线段AB的闭二倍关联点C表示的数为2,则点B表示的数为 ;(3)点A表示的数为1,点C,D表示的数分别是4,7,点O为数轴原点,点B为线段CD上一点.设点M表示的数为m.若点M是线段AB的闭二倍关联点,求m的取值范围.5、解不等式组:. -参考答案-一、单选题1、C【解析】【分析】由至多得到小于等于,结合大于得到答案.【详解】解:由题意得,攀攀的年龄大于1且小于等于3,故选:C.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握大于、大于等于、小于等于的不同表示方法是解题的关键.2、B【解析】【分析】根据不等式的性质,加减运算不等号不变,乘除运算,正数不等号不变,负号,不等号一定改变,判断B不成立.【详解】∵a<b,3是正数,∴3a<3b,故A不符合题意;∵a<b,-3是负数,∴-3a>-3b,故B不成立,符合题意;∵a<b,-1是负数,∴-a>-b,故C成立,不符合题意;∵a<b,3是正数,∴3+a<3+b,故D成立,不符合题意;故选B.【点睛】本题考查了不等式的基本性质,熟练掌握性质,特别是负数参与计算的不等式问题,注意改变不等号的方向是解题的关键.3、D【解析】【分析】根据题意先移项,再把x的系数化为1即可得出答案.【详解】解:不等式4x-8≤0,移项得,4x≤8,把x的系数化为1得,x≤2.故选:D.【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键.4、D【解析】略5、D【解析】【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C.当c=0时,不等式不成立,故C选项不正确,不符合题意;D.不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意.故选:D.【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、A【解析】【分析】解出各个不等式,然后检验-1是否在解集内,就可以进行判断.【详解】解:A:2x+1≤-3,解得x≤-2,-1不在解集内,故符合题意.B:2x-1≥-3,解得x≥-1,-1在解集内,故不符合题意.C:-2x+1≥3中,解得x≤-1,-1在解集内,故不符合题意.D:-2x-1≤3中,解得x≥-2,-1在解集内,故不符合题意.故选:A.【点睛】本题考查解一元一次不等式,解题的关键是熟知解一元一次不等式的步骤.7、C【解析】【分析】根据不等式的性质判断.【详解】解:∵,∴a+1>b+1,故选项A错误;∵,∴-a<-b,故选项B错误;∵,∴,故选项C正确;∵,∴,故选项D错误;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质是解题的关键.8、C【解析】【分析】根据a>b,应用不等式的基本性质,逐项判断即可.【详解】解:∵a<b,∴-a>-b,∴4-a>4-b,∴选项A不符合题意;∵a<b,∴2a<2b,∴选项B不符合题意;∵a<b,∴a2<ab(),或a2=ab(a=0), ∴选项C符合题意;∵a<b,∴a-3<b-1,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9、C【解析】【分析】设小明答对x道题,则答错或不答(20﹣x)道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.10、B【解析】【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.【详解】A、不等式中含有两个未知数,不符合题意;B、符合一元一次不等式的定义,故符合题意;C、没有未知数,不符合题意;D、未知数的最高次数是2,不是1,故不符合题意.故选:B【点睛】本题考查一元一次不等式的定义,掌握其定义是解决此题关键.二、填空题1、或或或或或或或或【解析】【分析】设A,B,C三类疫苗每件的盒数分别为盒,得出甲乙接种点配备A类、B类、C类疫苗的盒数,根据甲接种点和乙接种点配备疫苗的总盒数相同,列出方程,列一元一次不等式,进而解二元一次方程,求整数解即可.【详解】解:设A,B,C三类疫苗每件的盒数分别为盒,则甲接种点配备A类、B类、C类疫苗的盒数分别为盒,乙接种点配备A类、B类、C类疫苗的盒数分别为,则即①三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒,则,且都为整数解得解得则或即或或解得或皆为整数,若,则,符合题意或为整数,则时,,,时,,,时,,,时,,,时,,,时,,,时,,,时,,,时,,, ,,,,,,,,故答案为:,,,,,,,,【点睛】本题考查了二元一次方程组,一元一次不等式组的应用,求得的取值范围是解题的关键.2、5【解析】【分析】不等式移项、合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】3x﹣6≤2+x,3x﹣x≤2+6,2x≤8,解得:x≤4,则不等式的非负整数解为0,1,2,3,4共5个.故答案为5.【点睛】此题考查了一元一次不等式的整数解,熟练掌握运算步骤是解本题的关键.3、【解析】【详解】解:,,,最小整数解是,故答案为.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.4、5或6【解析】【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:.又为正整数,或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.5、x-4<0【解析】【分析】根据负数小于零列不等式解答即可.【详解】解:由题意得x-4<0,故答案为:x-4<0.【点睛】本题考查了列不等式表示数量关系,与列代数式问题相类似,首先要注意其中的运算及运算顺序,再就是要注意分清大于、小于、不大于、不小于的区别.三、解答题1、﹣2<x≤4,数轴见解析【解析】【分析】求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:,由①得,x>﹣2;由②得,x≤4,故此不等式组的解集为:﹣2<x≤4.在数轴上表示为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、x≤2.5,数轴见解析.【解析】【分析】先分别求出两个不等式的解集,可得不等式组的解集,再在数轴上表示出来,即可求解.【详解】解:解不等式,得:x<5,解不等式3(x+2)≥6﹣2(1﹣x),得:x≤2.5,则不等式组的解集为x≤2.5,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的基本步骤是解题的关键.3、甲种运输车至少应安排6辆.【解析】【分析】设应安排甲种运输车x辆,则安排乙种运输车(10−x)辆,根据运往武汉的救援物资不少于91t,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设应安排甲种运输车x辆,则安排乙种运输车(10−x)辆,依题意得:10x+8(10−x)≥91,解得:x≥.又∵x为整数,∴x的最小值为6.答:甲种运输车至少应安排6辆.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.4、(1)和;(2)3.5或8;(3)【解析】【分析】(1)首先点不在线段AB上,即点不是线段AB的闭二倍关联点;然后求出,,得到,则点线段AB的闭二倍关联点,同理即可判断点线段AB的闭二倍关联点;(2)设点B表示的数为x,然后求出,,再分当时,即,当时,即,两种情况讨论求解即可;(3)设点B表示的数为y,先求出,,当时,即当时,即,两种情况讨论求解即可.【详解】解:(1)∵点A表示数-1,点B表示的数5,点表示的数为-3,∴点不在线段AB上,即点不是线段AB的闭二倍关联点;∵点A表示数-1,点B表示的数5,点表示的数为1,∴,,∴,∴点线段AB的闭二倍关联点,同理,,∴,∴点线段AB的闭二倍关联点,故答案为:和;(2)设点B表示的数为x,∵点C是线段AB的闭二倍关联点,∴,,当时,即,解得;当时,即,解得;故答案为:3.5或8;(3)设点B表示的数为y,∵点M是线段AB的闭二倍关联点,∴,,当时,即,∴,∵B在线段CD上,且C、D表示的数分别为4、7,∴∴;当时,即,∴,∵B在线段CD上,且C、D表示的数分别为4、7,∴∴;∴综上所述,.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,解题的关键在于正确理解题意.5、【解析】【分析】,移项合并同类项,系数化为1;,先通分、去括号,然后移项合并同类项,最后系数化为1;求出两个不等式的公共解即可.【详解】解:①;②;∴不等式组的解为:.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的求每一个不等式的解.易错点在于消去负号时不等号方向改变.
相关试卷
这是一份数学七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后测评,共15页。试卷主要包含了下列命题中,假命题是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试课后练习题,共16页。试卷主要包含了下列说法中不正确的个数有,若,则不等式组的解集是,,那么等内容,欢迎下载使用。
这是一份2020-2021学年第十章 一元一次不等式和一元一次不等式组综合与测试练习,共19页。试卷主要包含了不等式的解集为等内容,欢迎下载使用。