|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选含答案)
    立即下载
    加入资料篮
    2022年冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选含答案)01
    2022年冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选含答案)02
    2022年冀教版八年级数学下册第十九章平面直角坐标系定向练习试卷(精选含答案)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十九章 平面直角坐标系综合与测试复习练习题

    展开
    这是一份数学八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了点在第四象限,则点在第几象限,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若点在第一象限,则a的取值范围是( )
    A.B.C.D.无解
    2、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3、下列各点中,在第二象限的点是( )
    A.B.C.D.
    4、在平面直角坐标系中,点在轴上,则点的坐标为( ).
    A.B.C.D.
    5、点在第四象限,则点在第几象限( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
    A.(-2,3)或(-2,-3)B.(-2,3)
    C.(-3,2)或(-3,-2)D.(-3,2)
    7、已知点和点关于轴对称,则的值为( )
    A.1B.C.D.
    8、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )
    A.点B.点C.点D.点
    9、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )
    A.(a,b)B.(-a,-b)C.(a+2,b+4)D.(a+4,b+2)
    10、如图,在平面直角坐标系中,已知,以为直边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系xOy中,点A(-3,0),B(3,0),C(3,2),如果△ABC与△ABD全等,那么点D的坐标可以是____(写出一个即可).
    2、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.
    3、教室里,从前面数第8行第3位的学生位置记作,则坐在第3行第8位的学生位置可表示为____________.
    4、在平面直角坐标系中,将线段AB平移后得到线段,点的对应点的坐标为,则点的对应点的坐标为______.
    5、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M(a﹣2,a+1)在第二象限,则a的值为 _____.
    三、解答题(5小题,每小题10分,共计50分)
    1、对于平面直角坐标系中的线段,给出如下定义:线段上所有的点到轴的距离的最大值叫线段的界值,记作.如图,线段上所有的点到轴的最大距离是3,则线段的界值.
    (1)若A(-1,-2),B(2,0),线段的界值__________,线段关于直线对称后得到线段,线段的界值为__________;
    (2)若E(-1,m),F(2,m+2),线段关于直线对称后得到线段;
    ①当时,用含的式子表示;
    ②当时,的值为__________;
    ③当时,直接写出的取值范围.
    2、如图,在平面直角坐标系中,,,.
    (1)在图中作出关于轴的对称图形,并直接写出点的坐标;
    (2)求的面积;
    (3)点与点关于轴对称,若,直接写出点的坐标.
    3、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
    (1)求点A和点B的坐标;
    (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
    (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
    4、如图,的顶点A,B分别在x轴,y轴上,;
    (1)若,且点B(0,2),C(-2,-1),
    ①点C关于y轴对称点的坐标为______;
    ②求点A的坐标;
    (2)若点B与原点重合,时,存在第三象限的点E和y轴上的点F,使,且A(3,0),C(0,m),F(0,n),线段EF的长度为,求AE的长.
    5、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
    (1)在图中作出关于轴对称的,并写出点的对应点的坐标;
    (2)在图中作出关于轴对称的,并写出点的对应点的坐标.
    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
    【详解】
    解: 点在第一象限,

    由①得:
    由②得:

    故选B
    【点睛】
    本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
    2、D
    【解析】
    【分析】
    由题意直接根据各象限内点坐标特征进行分析即可得出答案.
    【详解】
    ∵点A(x,5)在第二象限,
    ∴x<0,
    ∴﹣x>0,
    ∴点B(﹣x,﹣5)在四象限.
    故选:D.
    【点睛】
    本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    3、D
    【解析】
    【分析】
    根据第二象限内的点的横坐标为负,纵坐标为正判断即可.
    【详解】
    解:∵第二象限内的点的横坐标为负,纵坐标为正,
    ∴在第二象限,
    故选:D.
    【点睛】
    本题考查了象限内点的坐标的特征,解题关键是熟记第二象限内点的横坐标为负,纵坐标为正.
    4、A
    【解析】
    【分析】
    根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标
    【详解】
    解:∵点在轴上,

    解得
    故选A
    【点睛】
    本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;
    ④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.
    5、C
    【解析】
    【分析】
    根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
    【详解】
    ∵点A(x,y)在第四象限,
    ∴x>0,y<0,
    ∴﹣x<0,y﹣2<0,
    故点B(﹣x,y﹣2)在第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    6、A
    【解析】
    【分析】
    根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
    【详解】
    解:∵点P在y轴左侧,
    ∴点P在第二象限或第三象限,
    ∵点P到x轴的距离是3,到y轴距离是2,
    ∴点P的坐标是(-2,3)或(-2,-3),
    故选:A.
    【点睛】
    此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
    7、A
    【解析】
    【分析】
    直接利用关于轴对称点的性质(横坐标不变,纵坐标互为相反数)得出,的值,进而得出答案.
    【详解】
    解答:解:点和点关于轴对称,
    ,,


    故选:A.
    【点睛】
    此题主要考查了关于轴对称点的性质,正确得出,的值是解题关键.
    8、B
    【解析】
    【分析】
    结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.
    【详解】
    ∵点和,
    ∴坐标原点的位置如下图:
    ∵藏宝地点的坐标是
    ∴藏宝处应为图中的:点
    故选:B.
    【点睛】
    本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.
    9、D
    【解析】
    【分析】
    根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标.
    【详解】
    解:∵△A′B′O′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),
    ∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,
    ∴△ABO内任意点P(a,b)平移后的对应点P′的坐标为(a+4,b+2).
    故选:D.
    【点睛】
    此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.
    10、A
    【解析】
    【分析】
    根据等腰直角三角形的性质得到OA1=,OA2=,OA3=,…,OA1033=,再利用A1、A2、A3、…,每8个一循环,再回到x轴的负半轴的特点可得到点A1033在x轴负半轴,即可确定点A1033的坐标.
    【详解】
    解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,
    ∴OA1=,OA2=,OA3=,……,OA1033=,
    ∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,
    1033=8×129+1,
    ∴点A1033在x轴负半轴,
    ∵OA1033=,
    ∴点A1033的坐标为:,
    故选:A.
    【点睛】
    本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.
    二、填空题
    1、(3,-2)(答案不唯一)
    【解析】
    【分析】
    如图,把沿轴对折可得 再根据的位置确定其坐标即可.
    【详解】
    解:如图,把沿轴对折可得:




    同理:把,关于轴对折,可得:


    综上:的坐标为:或或
    故答案为:或或(任写一个即可)
    【点睛】
    本题考查的是轴对称的性质,三角形全等的性质,坐标与图形,熟练的利用轴对称确定全等三角形的对应顶点是解本题的关键.
    2、
    【解析】
    【分析】
    由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.
    【详解】
    解: 点A(a,-3)与点B(3,b)关于y轴对称,


    故答案为:
    【点睛】
    本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
    3、
    【解析】
    【分析】
    根据已知点的坐标表示方法即可求即.
    【详解】
    解:∵从前面数第8行第3位的学生位置记作,
    ∴坐在第3行第8位的学生位置可表示为(3,8).
    故答案为(3,8).
    【点睛】
    本题考查点的坐标表示位置,掌握点坐标表示方法是解题关键.
    4、
    【解析】
    【分析】
    根据题意可得线段AB先向右平移2个单位,再向下平移2个单位得到线段,即可求解.
    【详解】
    解:∵将线段AB平移后得到线段,点的对应点的坐标为,
    ∴线段AB先向右平移2个单位,再向下平移2个单位得到线段,
    ∴点的对应点的坐标为 .
    故答案为:
    【点睛】
    本题主要考查了坐标与图形——平移,根据题意得到线段AB先向右平移2个单位,再向下平移2个单位得到线段是解题的关键.
    5、0或1##1或0
    【解析】
    【分析】
    根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.
    【详解】
    解:∵点M(a﹣2,a+1)在第二象限,
    ∴a-2<0,a+1>0,
    ∴-1∵点M为格点,
    ∴a为整数,即a的值为0或1,
    故答案为:0或1.
    【点睛】
    此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.
    三、解答题
    1、 (1)2,6
    (2)①=4-m;1,5;,
    【解析】
    【分析】
    (1)由对称的性质求得C、D点的坐标即可知.
    (2)由对称的性质求得G点坐标为(-1,4-m),H点坐标为(2,2-m)
    ①因为,故4-m>2-m>0,则=4-m
    ②需分类讨论和的值大小,且需要将所求m值进行验证.
    ③需分类讨论,当,则且,当,则且,再取公共部分即可.
    (1)
    线段 上所有的点到轴的最大距离是2,则线段的界值
    线段AB关于直线对称后得到线段,C点坐标为(-1,6),D点坐标为(2,4),线段CD 上所有的点到轴的最大距离是6,则线段的界值
    (2)
    设G点纵坐标为a,H点纵坐标为b
    由题意有,
    解得a=4-m,b=2-m
    故G点坐标为(-1,4-m),H点坐标为(2,2-m)
    ①当,4-m>2-m>0
    故=4-m
    ②若,则
    即m=1或m=7
    当m=1时,,,符合题意
    当m=7时,,,,不符合题意,故舍去.
    若,则
    即m=-1或m=5
    当m=-1时,,,,不符合题意,故舍去
    当m=5时,,,符合题意.
    则时,的值为1或5.
    ③当,则且
    故有,
    解得,

    解得
    故,
    解得

    当,则且
    故有,
    解得,

    解得
    故,
    解得

    综上所述,当时, 的取值范围为和.
    【点睛】
    本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m和2-m的大小关系,还有去绝对值的情况是解题的关键.的解集为,的解集为,.
    2、 (1)见详解;(−2,1);
    (2)8.5;
    (3)P(5,3)或(−1,−3).
    【解析】
    【分析】
    (1)画出△A1B1C1,据图直接写出C1坐标;
    (2)先求出△ABC外接矩形CDEF面积,用之减去三个直角三角形的面积,得△ABC的面积;
    (3)先根据P,Q关于x轴对称,得到Q的坐标,再构建方程求解即可.
    (1)
    解:如图1
    △A1B1C1就是求作的与△ABC关于x轴对称的三角形,点C1的坐标(−2,1);
    (2)
    解:如图2
    由图知矩形CDEF的面积:5×5=25
    △ADC的面积:×4×5=10
    △ABE的面积:×1×3=
    △CBF的面积:×5×2=5
    所以△ABC的面积为:25-10--5=8.5.
    (3)
    解:∵点P(a,a−2)与点Q关于x轴对称,
    ∴Q(a,2−a),
    ∵PQ=6,
    ∴|(a-2)-(2-a)|=6,解得:a=5或a=-1,
    ∴P(5,3)或(−1,−3).
    【点睛】
    本题考查了作图−轴对称变换,三角形的面积等知识,解题的关键是理解题意,掌握关于坐标轴对称的两点的坐标特征,属于中考常考题型.
    3、(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
    【解析】
    【分析】
    (1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
    (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
    (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
    【详解】
    (1)∵,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,.
    (2)如图,过点F作FH⊥AO于点H
    ∵AF⊥AE
    ∴∠FHA=∠AOE=90°,

    ∴∠AFH=∠EAO
    又∵AF=AE,
    在和中


    ∴AH=EO=2,FH=AO=4
    ∴OH=AO-AH=2
    ∴F(-2,4)
    ∵OA=BO,
    ∴FH=BO
    在和中


    ∴HD=OD

    ∴HD=OD=1
    ∴D(-1,0)
    ∴D(-1,0),F(-2,4);
    (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S

    ∴,



    ∴等腰
    ∴NQ=NO,
    ∵NG⊥PN, NS⊥EG

    ∴,

    ∵,

    ∵点E为线段OB的中点







    ∴等腰
    ∴NG=NP,


    ∴∠QNG=∠ONP
    在和中


    ∴∠NGQ=∠NPO,GQ=PO
    ∵,
    ∴PO=PB
    ∴∠POE=∠PBE=45°
    ∴∠NPO=90°
    ∴∠NGQ=90°
    ∴∠QGR=45°.
    在和中

    ∴.
    ∴QR=OE
    在和中


    ∴QM=OM.
    ∵NQ=NO,
    ∴NM⊥OQ

    ∴等腰



    在和中


    ∴NS=EM=4,MS=OE=2
    ∴N(-6,2).
    【点睛】
    本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
    4、 (1)①(2,-1);②(3,0).
    (2)6.
    【解析】
    【分析】
    (1)①根据关于y轴对称的点纵坐标不变、横坐标变为原来的相反数即可解答;②设A点坐标为(a,0),再运用两点间距离公式求得BC的长,进而求得AB的长,然后根据两点间距离公式即可求解;
    (2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M,则C(0,m)、H(0,-n)、m<0、n>0,进一步说明HC=EF;然后再证明△FEM≌△HCN得到FM=HN、EM=CN,证明Rt△AFM≌Rt△AHN得到AM=AN,进一步说明AE=AC,最后求得AC的长即可.
    (1)
    解:(1)①由关于y轴对称的点纵坐标不变、横坐标变为原来的相反数,则点C(-2,-1)关于y轴对称点的坐标为(2,-1);
    故答案是(2,-1);
    ②设A点坐标为(a,0)
    ∵B(0,2),C(-2,-1),
    ∴BC=-2-02+-1-22=13
    ∴AB=BC=13
    ∴a-02+0-22=13,解得a=3.
    ∴点A的坐标为(3,0).
    (2)
    解:(2)作点F关于x轴的对称点H(0,-n),则AF=AH、OF=OH,过点H作HN⊥AC于点N,过点F作FM⊥AE于点M,
    ∵C(0,m),H(0,-n),m<0,n>0,
    ∴HC=OC-OH=-m-n,
    ∵EF=-m-n,
    ∴HC=EF,
    ∵∠AEF=∠ACO=30°,
    ∴∠FME=∠HNC,
    ∴△FEM≌△HCN(AAS),
    ∴FM=HN,EM=CN,
    在Rt△AFM和Rt△AHN中,
    AF=AH,FM=HN
    ∴Rt△AFM≌Rt△AHN(HL),
    ∴AM=AN,
    ∴EM+AM=CN+AN,
    ∴AE=AC,
    ∵∠ACO=30°,A(3,0),
    ∴OA=3,
    ∴AC=2OA=6,
    ∴AE=6.
    【点睛】
    本题主要考查了轴对称、两点间的距离公式、勾股定理、全等三角形的判定与性质等知识点,综合应用相关知识成为解答本题的关键.
    5、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
    【解析】
    【分析】
    (1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
    (2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
    然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
    【详解】
    解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    关于轴对称的,
    关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
    ∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
    在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
    顺次连接A1B1, B1C1,C1A1,
    则为所求,点B1(-5,-1);
    (2)∵关于轴对称的,
    ∴点的坐标特征是横坐标互为相反数,纵坐标不变,
    ∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
    ∴中点A2(6,6),点B2(5,1),点C2(1,6),
    在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
    顺次连接A2B2, B2C2,C2A2,
    则为所求,点B2(5,1).
    【点睛】
    本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
    相关试卷

    冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题: 这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共34页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了点A关于轴的对称点的坐标是,在平面直角坐标系中,点A,在平面直角坐标系中,点等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评: 这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共21页。试卷主要包含了点A的坐标为,则点A在,已知点A,下列命题中为真命题的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map