冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题
展开
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共34页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中,是真命题的有( )
①以1、、为边的三角形是直角三角形,则1、、是一组勾股数;
②若一直角三角形的两边长分别是5、12,则第三边长为13;
③二次根式是最简二次根式;
④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;
⑤东经113°,北纬35.3°能确定物体的位置.
A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤
2、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )
A. B. C. D.
3、如图,,且点A、B的坐标分别为,则长是( )
A. B.5 C.4 D.3
4、点在第四象限,则点在第几象限( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )
A.b≥0 B.b≤0 C.b<0 D.b>0
6、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )
A. B. C. D.
9、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,在x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为( )
A. B. C. D.
10、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,
(1)当△ABP成为等边三角形时,点 P的坐标为________.
(2)若∠APB<45°,则 t的取值范围为_______.
2、已知点,是关于x轴对称的点,______.
3、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.
4、在平面直角坐标系中,点A的坐标为,将点A向上平移两个单位后刚好落在x轴上,则m的值为______.
5、在平面直角坐标系中,如果点在y轴上,那么点M的坐标是______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,将点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”.
(1)点的“相对轴距”______;
(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;
(3)已知点,,,点M,N是内部(含边界)的任意两点.
①直接写出点M与点N的“相对轴距”之比的取值范围;
②将向左平移个单位得到,点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围.
2、在平面直角坐标系xOy中,已知点A的坐标为(4,1),点B的坐标为(1,﹣2),BC⊥x轴于点C.
(1)在平面直角坐标系xOy中描出点A,B,C,并写出点C的坐标 ;
(2)若线段CD是由线段AB平移得到的,点A的对应点是C,则点B的对应点D的坐标为 ;
(3)求出以A,B,O为顶点的三角形的面积;
(4)若点E在过点B且平行于x轴的直线上,且△BCE的面积等于△ABO的面积,请直接写出点E的坐标.
3、如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.
(1)直接写出的度数.
(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.
(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.
4、在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
5、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.
【详解】
解:①以1、、为边的三角形是直角三角形,但1、、不是勾股数,故该项不是真命题;
②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;
③二次根式不是最简二次根式,故该项不是真命题;
④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;
⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;
故选:D.
【点睛】
此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.
2、D
【解析】
【分析】
如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.
【详解】
解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D
∵
∴
在和中
∴
∴
∴B点坐标为
故选D.
【点睛】
本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.
3、D
【解析】
【分析】
利用全等三角形的性质证明即可.
【详解】
解:∵A(-1,0),B(0,2),
∴OA=1,OB=2,
∵△AOB≌△CDA,
∴OB=AD=2,
∴OD=AD+AO=2+1=3,
故选D.
【点睛】
本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质,属于中考常考题型.
4、C
【解析】
【分析】
根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
【详解】
∵点A(x,y)在第四象限,
∴x>0,y<0,
∴﹣x<0,y﹣2<0,
故点B(﹣x,y﹣2)在第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、D
【解析】
【分析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.
【详解】
解:∵点P(﹣5,b)在第二象限,
∴b>0,
故选D.
【点睛】
本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
6、B
【解析】
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
7、B
【解析】
【分析】
由题意知P点在第二象限,进而可得结果.
【详解】
解:∵a<0, b>0
∴P点在第二象限
故选B.
【点睛】
本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.
8、B
【解析】
【分析】
根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.
【详解】
解:∵用表示5排7座
∴坐标的第一个数表示排,第二个数表示座
∴小嘉坐在7排8座可表示出(7,8).
故选B.
【点睛】
本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.
9、C
【解析】
【分析】
求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.
【详解】
解:过点A作AC⊥OB于C,
∵,∠AOB=,
∴,
∴,
∴A.
∵,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转,
∴第1秒时,点A的对应点的坐标为,
∵三角板每秒旋转,
∴此后点的位置6秒一循环,
∵,
∴则第2022秒时,点A的对应点的坐标为,
故选:C
【点睛】
此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.
10、D
【解析】
【分析】
由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.
【详解】
解:∵点P(2a﹣4,a+3)在x轴上,
∴a+3=0,
解得a=-3,
∴﹣a+2=5,3a﹣1=-10,
∴点(﹣a+2,3a﹣1)所在的象限为第三象限,
故选:D.
【点睛】
此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.
二、填空题
1、 (0,)或(0,-); t>2+或t<-2-.
【解析】
【分析】
(1)根据△ABP成为等边三角形,点A(2,0),B(-2,0),得出AP=AB=2-(-2)=2+2=4,在Rt△OAP中,点P(0,t),根据勾股定理,即,解方程即可;
(2)分两种情况,点P在x轴上方,∠APB=45°,根据点P在y轴上,OA=OB=2,可得OP为AB的垂直平分线,得出AP=BP,根据等腰三角形三线合一性质得出∠APO=∠BPO=22.5°,在y轴的正半轴上截取OC=OA=2,∠AOC=90°,可证△AOC为等腰直角三角形,∠OCA=45°,根据勾股定理AC=,根据三角形外角∠AOC是△PCA的外角性质得出∠CPA=∠CAP,求出点P(0,2+),根据远离AB角度变小知当∠APB<45°时,t>2+,当点P在x轴下方,利用轴对称性质,求出点P(0,-2-),∠APB=45°,当∠APB<45°,t<-2-即可.
【详解】
解:(1)∵△ABP成为等边三角形,点A(2,0),B(-2,0),
∴AP=AB=2-(-2)=2+2=4,
在Rt△OAP中,点P(0,t),
根据勾股定理,即,
解得,
∴点P(0,)或(0,-),
故答案为(0,)或(0,-);
(2)分两种情况,点P在x轴上方,∠APB=45°,
∵点P在y轴上,OA=OB=2,
∴OP为AB的垂直平分线,
∴AP=BP,
∴∠APO=∠BPO=22.5°,
在y轴的正半轴上截取OC=OA=2,∠AOC=90°,
∴△AOC为等腰直角三角形,∠OCA=45°,
根据勾股定理AC=,
∵∠AOC是△PCA的外角,
∴∠ACO=∠CPA+∠CAP=45°,
∵∠APO=22.5°,
∴∠CAP=45°-∠CPA=45°-∠APO=45°-22.5°=22.5°,
∴∠CPA=∠CAP,
∴CP=AC=,
∴OP=OC+CP=2+
∴点P(0,2+)
当∠APB<45°时,t>2+,
当点P在x轴下方,
利用轴对称性质,
点P(0,-2-),∠APB=45°,
当∠APB<45°,t<-2-,
综合得∠APB<45°,则 t的取值范围为t>2+或t<-2-.
故答案为t>2+或t<-2-.
【点睛】
本题考查等边三角形的性质,勾股定理,图形与坐标,等腰直角三角形,线段垂直平分线,等腰三角形三线合一性质,轴对称性质,掌握以上知识是解题关键.
2、3
【解析】
【分析】
根据轴对称的性质得到b=-1,a+1=3,求出a的值代入计算即可.
【详解】
解:∵点,是关于x轴对称的点,
∴b=-1,a+1=3,
解得a=2,
2-(-1)=3,
故答案为:3.
【点睛】
此题考查了关于x轴对称的性质:横坐标相等,纵坐标互为相反数,解题的关键是熟记轴对称的性质.
3、y=1
【解析】
【分析】
根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.
【详解】
解:∵所求直线经过点M(3,1)且平行于x轴,
∴该直线上所有点纵坐标都是1,
故可以表示为直线y=1.
故答案为:y=1.
【点睛】
此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.
4、1
【解析】
【分析】
先求出点A向上平移两个单位后的坐标为,x轴上点坐标的特征即可求出m的值.
【详解】
∵,
∴将点A向上平移两个单位后的坐标为,
∵在x轴上,
∴,
解得:.
故答案为:1.
【点睛】
本题考查点坐标的平移以及x轴点坐标的特征,掌握点坐标平移的性质以及x轴点坐标的特征是解题的关键.
5、
【解析】
【分析】
根据轴上点的横坐标为0,即可求得的值,进而代入即可求得点的坐标.
【详解】
解:在y轴上,
,
解得,
,
点M的坐标为.
故答案为:.
【点睛】
本题考查了点的坐标,熟知y轴上的点的横坐标为0是解答本题的关键.
三、解答题
1、 (1)2;
(2)见详解;
(3)①;②
【解析】
【分析】
(1)根据题意正确写出答案即可;
(2)根据题意画出图形即可;
(3)①正确画出图形,根据题意分别求出,的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.
(1)
解:点到x轴和y轴的距离的较大值定义为点M的“相对轴距”,点
2;
(2)
解:的“相对轴距”是2,
与点的“相对轴距”相等的点的横纵坐标的最大值为2,
依题意得到的图形是正方形,如图,
(3)
解:①如图,
当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”,
当取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合,
的最小值为1,的最大值为3时,的最小值为,
当取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,
的最大值为3,的最小值为1时,的最大值3,
;
② 点与点为内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,
依题意,点的坐标为,
点在两点(1,1),(-1,1)确定的线段上,
,
.
【点睛】
本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键.
2、 (1)作图见解析,C点坐标为
(2)
(3)4.5
(4)E点坐标为或
【解析】
【分析】
(1)在平面直角坐标系中表示出A,B,C即可.
(2)由题意知,,将点C向下移动3格,向左移动3格到点D,得出坐标.
(3)利用分割法求面积,的面积等于矩形减去3个小三角形的面积,计算求值即可.
(4)设E点坐标为,由题意列方程求解即可.
(1)
解:如图,点A,B,C即为所求,C点坐标为(1,0)
故答案为:(1,0).
(2)
解:∵点A向下移动3格,向左移动3格到点B,
∴点C向下移动3格,向左移动3格到点D
∴D点坐标为
故答案为:.
(3)
解:∵
∴以A,B,O为顶点的三角形的面积为4.5.
(4)
解:设E点坐标为
由题意可得
解得:或
∴E点坐标为或.
【点睛】
本题考查了直角坐标系中的点坐标,平行的性质,分割法求面积,解一元一次方程等知识.解题的关键在于灵活运用知识求解.
3、(1)∠BAO=60°;(2)M3,0;(3)BPCP=35.
【解析】
【分析】
(1)根据坐标系写出的坐标,进而根据,因式分解可得b+2a=0,进而可得AB=2OA,在x轴的正半轴上取点C,使OC=OA,连接BC,证明△ABC是等边三角形,进而即可求得∠BAO=60°;
(2)连接BM,△AQD≌△APO,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得OM=12AB=3
(3)过点F作FN∥x轴交CB的延长线于点N,证明△BEC≌△FBN,△PAC≌△PFN,设OC=2a,则等边三角形ABC的边长是4a,OE=EC=a=BN,进而计算可得BP=12NC-BN=32a,PC=12NC=52a,即可求得的值.
【详解】
(1)∵点在x轴负半轴上,
∴AO=-a,a
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了点在第四象限,则点在第几象限,已知点和点关于轴对称,则的值为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试测试题,共21页。试卷主要包含了点A关于轴的对称点的坐标是,在平面直角坐标系中,点A,在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课时训练,共26页。