初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后复习题,共23页。试卷主要包含了点A关于y轴的对称点A1坐标是,如果点P,已知点A,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( ).A.1 B. C.7 D.2、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )A. B. C. D.3、在下列说法中,能确定位置的是( )A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号4、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)5、如果点P(﹣5,b)在第二象限,那么b的取值范围是( )A.b≥0 B.b≤0 C.b<0 D.b>06、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、点P(﹣1,2)关于y轴对称点的坐标是( ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)8、在平面直角坐标系中,所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限9、如图,在平面直角坐标系中,已知点、,对连续作旋转变换依次得到三角形(1),(2),(3),(4),,则第2020个三角形的直角顶点的坐标是( )A. B. C. D.10、在平面直角坐标系中,点在轴上,则点的坐标为( ).A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.2、点P(4,a)关于y轴的对称点是Q(b,-2),则ab的值为_________.3、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.4、点到轴的距离是________.5、一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移_________个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数b,相应的新图形就是把原图形向上(或向下)平移_________个单位长度.三、解答题(5小题,每小题10分,共计50分)1、如图,的三个顶点都在边长为1的正方形网格的格点上,其中点B的坐标为,点C的坐标为.(1)在网格中画出关于y轴对称的图形,并直接写出点的坐标;(2)求线段的长.2、如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、B、C分别对应A1、B1、C1);(2)△A1B1C1的面积= ;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A1B1C1内部的对应点M1的坐标 ;(4)请在y轴上找出一点P,满足线段AP+B1P的值最小,并写出P点坐标 .3、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为.(1)根据上述条件,在网格中画出平面直角坐标系;(2)画出关于x轴对称图形;(3)点A绕点B顺时针旋转90°,点A对应点的坐标为______.4、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设. (1)直接写出的范围;(2)若点为轴上的动点,结合图形,求(用含的式子表示);(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.5、在的正方形网格中,小正方形的边长均为1个单位长度.(1)画出绕点O逆时针旋转90°的;(2)再画出关于点O的中心对称图形. -参考答案-一、单选题1、A【解析】【分析】直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案.【详解】解:∵点P(a,3)和点Q(4,b)关于x轴对称,∴a=4,b=-3,则a+b =4-3=1.故选:A.【点睛】本题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.2、B【解析】【分析】根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.【详解】解:∵用表示5排7座∴坐标的第一个数表示排,第二个数表示座∴小嘉坐在7排8座可表示出(7,8).故选B.【点睛】本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.3、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.4、B【解析】【分析】由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.【详解】解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.故选B.【点睛】本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.5、D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,据此可得到b的取值范围.【详解】解:∵点P(﹣5,b)在第二象限,∴b>0,故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.6、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点A(x,5)在第二象限,∴x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、A【解析】【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A.【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.8、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、C【解析】【分析】利用勾股定理列式求出的长,再根据图形写出第(3)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2020除以3,根据商和余数的情况确定出第个三角形的直角顶点到原点的距离,然后写出坐标即可.【详解】解:点,,三角形(3)的直角顶点坐标为:第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合第2020个三角形的直角顶点的坐标是.故选:C.【点睛】本题考查了坐标与图形变化旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组,依次循环是解题的关键.10、A【解析】【分析】根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标【详解】解:∵点在轴上,∴解得故选A【点睛】本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.二、填空题1、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.2、8【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,横坐标不变,列式求得a、b即可解答.【详解】解:∵点P(4,a)关于x轴的对称点为Q(b,-2),∴a=-2,b=-4,∴ab=8,故答案是:8.【点睛】本题主要考查了关于y轴对称点的坐标特点,关于y轴对称点的坐标特点是“横坐标互为相反数,纵坐标不变” .3、 3 4 (3,﹣4)【解析】【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),∴x=3,y=4,∴A点坐标为(3,4),∴点A关于x轴的对称点的坐标是(3,-4).故答案为:3;4;(3,-4).【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.4、2【解析】【分析】由点到坐标轴的距离定义可知点到轴的距离是2.【详解】解:∵点A的纵坐标为-2∴点到轴的距离是故答案为:2.【点睛】本题考查了点到坐标轴的距离,点P的坐标为,那么点P到x轴的距离为这点纵坐标的绝对值,即,点P到y轴的距离为这点横坐标的绝对值,即.5、 a b【解析】略三、解答题1、 (1)画图见解析,(2)【解析】【分析】(1)分别确定关于轴对称的,再顺次连接,再根据位置可得的坐标即可;(2)由勾股定理进行计算即可得到答案.(1)解:如图,是所求作的三角形, (2)解:由勾股定理可得:【点睛】本题考查的是轴对称的作图,坐标与图形,勾股定理的应用,掌握“轴对称作图的基本步骤与勾股定理的应用”是解本题的关键.2、 (1)见解析(2)2(3)(x,-y)(4)点P见解析,(0,2)【解析】【分析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)利用割补法进行计算,即可得到△A1B1C1的面积;(3)根据点M和M1关于x轴对称可得结果;(4)直接利用轴对称求最短路线的方法得出答案.【小题1】解:如图所示:△A1B1C1点即为所求;【小题2】△A1B1C1的面积==2;【小题3】由题意可得:M1的坐标为(x,-y);【小题4】如图所示:点P即为所求,点P的坐标为(0,2).【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3、 (1)见解析(2)见解析(3)(2,2)【解析】【分析】(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;(2)画出三角形顶点的对称点,再顺次连接即可;(3)画出旋转后点的位置,写出坐标即可.(1)解:坐标系如图所示,(2)解:如图所示,就是所求作三角形;(3)解:如图所示,点A绕点B顺时针旋转90°的对应点为,坐标为(2,2);故答案为:(2,2)【点睛】本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.4、 (1)或(2)或(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.【解析】【分析】(1)先确定点在轴上的范围,再确定的范围即可;(2)分类讨论,结合平行线的性质,求出或的度数即可;(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.(1)解:∵的另一边一定在边的左边或上方且与轴交于点,∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,∴BN∥OC,∴的另一边与轴没有交点,∴点一定在(8,0)左侧,当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;所以,的范围是或;(2)解:当点在点、之间时,此时,∵BC∥OA,∴,∵∠MBN=45°,∴,,∵与互余,,当点在点的左边时,此时,同理可得,,;当点在点的右边且在(8,0)左侧时,据题意,同理可得,,则,;(3)解:当点在点、之间时,如图①,过点作且交轴于点,,,,又,,,,,又,,,,而的周长为,当点在点的左边时,如图②,必有,,,而,,故,当点在点的右边时,如图③,则,,,而,,,综上所述,只有当点在轴的正半轴上且在点的左边时,的周长取得最小值且为8.【点睛】本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.5、 (1)见解析(2)见解析【解析】【分析】(1)根据旋转的性质即可作图;(2)根据中心对称的性质即可作图.(1)如图所示;(2)如图所示△A2B2C2即为所求.【点睛】本题主要考查了作图-旋转变换,熟练掌握旋转的性质是解题的关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试同步测试题,共24页。试卷主要包含了若点P,下列说法错误的是,在平面直角坐标系中,点,点在第四象限,则点在第几象限,下列命题中为真命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共20页。试卷主要包含了在下列说法中,能确定位置的是,若点在轴上,则点的坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共22页。试卷主要包含了在平面直角坐标系中,A,在平面直角坐标系中,点P等内容,欢迎下载使用。