终身会员
搜索
    上传资料 赚现金

    难点解析冀教版八年级数学下册第十九章平面直角坐标系定向攻克练习题(含详解)

    立即下载
    加入资料篮
    难点解析冀教版八年级数学下册第十九章平面直角坐标系定向攻克练习题(含详解)第1页
    难点解析冀教版八年级数学下册第十九章平面直角坐标系定向攻克练习题(含详解)第2页
    难点解析冀教版八年级数学下册第十九章平面直角坐标系定向攻克练习题(含详解)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第十九章 平面直角坐标系综合与测试同步练习题

    展开

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试同步练习题,共23页。试卷主要包含了12,则第三边长为13;,在平面直角坐标系中,点,点关于轴对称点的坐标为等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在下列说法中,能确定位置的是(     A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号2、下列命题中,是真命题的有(       ①以1、为边的三角形是直角三角形,则1、是一组勾股数;②若一直角三角形的两边长分别是5、12,则第三边长为13;③二次根式是最简二次根式;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个;⑤东经113°,北纬35.3°能确定物体的位置.A.①②③④⑤ B.①②④⑤ C.②④⑤ D.④⑤3、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是(       A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)4、若点Pm1)在第二象限内,则点Q1m,﹣1)在(  )A.第四象限 B.第三象限 C.第二象限 D.第一象限5、在一次“寻宝”游戏中,寻宝人已经找到两个标志点,并且知道藏宝地点的坐标是,则藏宝处应为图中的(       A.点 B.点 C.点 D.点6、在平面直角坐标系中,点(-2,a2+3)关于x轴对称的点在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系中,已知a<0, b>0, 则点Pab)一定在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限8、点关于轴对称点的坐标为(       A. B. C. D.9、已知点与点关于y轴对称,则的值为(     A.5 B. C. D.10、在平面直角坐标系中,点A的坐标为(﹣4,3),若ABx轴,且AB=5,当点B在第二象限时,点B的坐标是(  )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作RtOA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 RtOA2A3RtOA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.2、如果点B与点C的横坐标相同,纵坐标不同,那么直线y轴的关系为__________.3、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.4、平面直角坐标系中,将点A(﹣2,1)向右平移4个单位长度,再向下平移3个单位长度得到点A′,则点A′的坐标为_____.5、在平面直角坐标系中,点P(7,6)关于x轴对称点P′的坐标是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A1B1C1(2)在图中作出A1B1C1关于y轴对称的A2B2C2(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(ab)在A2B2C2内部的对应点P2的坐标为      2、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)3、如图,已知正方形ABCD的对角线ACBD相交于点M,顶点ABC的坐标分别为(1,3),(1,1),(3,1)(1)在坐标轴中画出正方形ABCD关于x轴对称的正方形EFGH(2)直接写出M点坐标:______;写出点M关于直线的对称点的坐标:______;写出点M关于直线的对称点的坐标:______;4、设两个点AB的坐标分别为,则线段AB的长度为:.举例如下:AB两点的坐标是,则AB两点之间的距离.请利用上述知识解决下列问题:(1)若,且,求x的值;(2)已知△ABC,点A、点B、点C,求△ABC的面积;(3)求代数式的最小值.5、如图,若三角形是由三角形平移后得到的,且三角形中任意一点经过平移后的对应点为(1)画出三角形(2)写出点的坐标   (3)直接写出三角形的面积   (4)点轴上,若三角形的面积为6,直接写出点的坐标    -参考答案-一、单选题1、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.2、D【解析】【分析】根据勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义分别判断.【详解】解:①以1、为边的三角形是直角三角形,但1、不是勾股数,故该项不是真命题;②若一直角三角形的两边长分别是5、12,则第三边长为13或,故该项不是真命题;③二次根式不是最简二次根式,故该项不是真命题;④在实数0,﹣0.3333……,,0.020020002,,0.23456…,中,无理数有3个,故该项是真命题;⑤东经113°,北纬35.3°能确定物体的位置,故该项是真命题;故选:D.【点睛】此题考查了真命题的定义:正确的命题是真命题,正确掌握勾股数的定义、勾股定理、最简二次根式定义、无理数定义、有序数对定义是解题的关键.3、A【解析】【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.4、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点Pm1)在第二象限内,m01m0则点Q1m,﹣1)在第四象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.6、C【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数求解即可.【详解】解:∵点关于轴对称的点是∴点关于轴对称的点在第三象限.故选:C.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.7、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.8、D【解析】【分析】根据关于x轴对称的两个点,横坐标相等,纵坐标互为相反数即可求解【详解】关于轴对称点的坐标为故选D【点睛】本题考查了关于x轴对称的两个点的坐标特征,掌握关于x轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.9、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.10、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:轴,,点B在第二象限,B一定在点A的左侧,且两个点纵坐标相同,,即故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.二、填空题1、22020【解析】【分析】根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),OA0=1,∴点A1 的横坐标是 1=20OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,OA2=2OA1=4,∴点A2 的横坐标是- OA2=-2=-21 依次进行下去,RtOA2A3,RtOA3A4…,同理可得:A3 的横坐标是﹣2OA2=﹣8=﹣23A4 的横坐标是﹣8=﹣23A5 的横坐标是 OA5×2OA4=2OA3=4OA2=16=24A6 的横坐标是2OA5=2×2OA4=23OA3=64=26A7 的横坐标是64=26发现规律,6次一循环,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是 22020故答案为:22020【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n轴上,且坐标为2、平行或重合##重合或平行【解析】【分析】根据点的坐标规律解答,此题根据图形即可求得.【详解】解:点B与点C的横坐标相同,则直线BC//y轴,当点B与点Cy轴上时,则直线BCy轴重合.故答案为:平行或重合.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.3、(【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵228=26,A22A6的位置在第三象限,且在经过点A2M的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A2(0,3),设直线A2M的解析式为y=kx+3,M点的坐标(-1,2)代入得:-k+3=2,解得:k=1,∴直线A2M的解析式为y=x+3,A22点在直线y=x+3上,第二个等腰直角三角形的边长为…,n个等腰直角三角形的边长为(n-1∴第22个等腰直角三角形的边长为(21,可得A22M=(21A21 A1=+1,A22 的横坐标为:A22 的纵坐标为:A22),故答案为:().【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.4、(2,-2)【解析】【分析】利用点平移的坐标规律,把A点的横坐标加4,纵坐标减3即可得到点A′的坐标.【详解】解:将点A(-2,1)向右平移4个单位长度,再向下平移3个单位长度得到点A',则点A′的坐标是(-2+4,1-3),即A′(2,-2).故答案为:(2,-2).【点睛】此题主要考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5、(7,-6)【解析】【分析】在平面直角坐标系中,关于x轴对称点的特征是横坐标不变,纵坐标变为原数的相反数,据此解题.【详解】解:点P(7,6)关于x轴对称点P′的坐标是(7,-6)故答案为:(7,-6).【点睛】本题考查平面直角坐标系中关于x轴对称点的特征,是基础考点,掌握相关知识是解题关键.三、解答题1、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)【解析】【分析】(1)利用平移变换的性质分别作出ABC 的对应点A1B1C1即可;(2)利用轴对称变换的性质分别作出A1B1C1的对应点A2B2C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可.【详解】解:(1)如图,A1B1C1即为所求;(2)如图,A2B2C2即为所求;(3)由题意得:P(﹣a﹣4,b﹣5).故答案为:(﹣a﹣4,b﹣5);【点睛】本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.2、 (1)见解析,(2)见解析,(3)绕点O顺时针时针旋转【解析】【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键.3、 (1)作图见详解;(2)【解析】【分析】(1)根据图象可得出点D的坐标,然后由点坐标关于x轴对称的点的特点:横坐标不变,纵坐标互为相反数可得点EFGH四个点的坐标,然后顺次连接即可;(2)根据坐标系中中点的坐标等于两个点横坐标和的一半,纵坐标和的一半可确定点M,然后由关于对称可得,纵坐标不变,两个对称点的横坐标和的一半即为对称轴,求解即可得;同理可求得点M关于对称的点的坐标.(1)解:根据图象可得:,点ABCD关于x轴的对称点分别为:,然后顺次连接可得:如图所示:正方形EFGH即为所求;(2)由图可得:设点M关于的对称点纵坐标不变,为解得:M关于的对称点为设点M关于的对称点纵坐标不变,为解得:M关于的对称点为故答案为:【点睛】题目主要考查坐标系中关于坐标轴对称的点的特点及求线段中点的坐标及作图方法,理解坐标系中关于坐标轴对称的点的特点是解题关键.4、 (1)(2)△ABC的面积为5(3)13【解析】【分析】(1)直接利用两点之间的距离公式计算即可;(2)利用两点之间的距离公式可求得ABBCAC的线段长度,利用勾股定理的逆定理可判断出△ABC为直角三角形,然后利用直角三角形的面积计算公式计算即可;(3)所求代数式可以看成是点与点的距离和点与点的距离之和,最短为点与点的距离之和,依此求解.(1)解:∵又∵,且(2)解:∴△ABC为直角三角形,(3)解:∵∴该代数式可看成是点与点的距离和点与点的距离之和,当点在点与点连接的线段上时最短为的最小值为13.【点睛】本题考查两点之间的距离,勾股定理和逆定理的应用,最短路线问题.(1)中理解题意,正确计算是解题关键;(2)中能计算三条线段长度,并判断三角形为直角三角形是解题关键;(3)中需注意因为带着平方,所以点和点不是唯一的,但因为点的纵坐标为0,所以必须保证上述两点的纵坐标一正一负,点才有可能在它们连接后的线段上.5、 (1)见解析(2)(3)2.5(4)【解析】【分析】(1)利用平移变换的性质分别作出ABC的对应点A1B1C1即可.(2)根据点A1的位置写出坐标即可.(3)利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.(4)设Mm,0),构建方程求出m即可.(1)如图,画出三角形即为所求.(2)的坐标故答案为:(3)直接写出三角形的面积故答案为:2.5.(4),则有解得故答案为:【点睛】本题考查坐标与图形变化-平移,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共31页。试卷主要包含了在平面直角坐标系中,点A,点A的坐标为,则点A在等内容,欢迎下载使用。

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后测评,共21页。试卷主要包含了点A的坐标为,则点A在,已知点A,下列命题中为真命题的是等内容,欢迎下载使用。

    初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题:

    这是一份初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,若点在轴上,则点的坐标为,在下列说法中,能确定位置的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map