初中数学第十九章 平面直角坐标系综合与测试练习
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试练习,共24页。试卷主要包含了在平面直角坐标系xOy中,点M,下列命题中为真命题的是,点在第四象限,则点在第几象限等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)3、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点4、在平面直角坐标系中,将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,那么点A的坐标是( )A. B. C. D.5、在平面直角坐标系xOy中,点M(1,2)关于x轴对称点的坐标为( )A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)6、下列命题中为真命题的是( )A.三角形的一个外角等于两内角的和B.是最简二次根式C.数,,都是无理数D.已知点E(1,a)与点F(b,2)关于x轴对称,则a+b=﹣17、在平面直角坐标系中,若点与点B关于x轴对称,则点B的坐标是( )A. B. C. D.8、如图,OA平分∠BOD,AC⊥OB于点C,且AC=2,已知点A到y轴的距离是3,那么点A关于x轴对称的点的坐标为( )A.(2,3) B.(3,2) C.(-2,-3) D.(-3,-2)9、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )A.先向左平移4个单位长度,再向上平移4个单位长度B.先向左平移4个单位长度,再向上平移8个单位长度C.先向右平移4个单位长度,再向下平移4个单位长度D.先向右平移4个单位长度,再向下平移8个单位长度第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点M(a﹣2,a+1)在第二象限,则a的值为 _____.2、点到轴的距离为______,到轴的距离为______.3、已知点M坐标为,点M到x轴距离为______.4、要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.5、如图,△ABC的顶点A,B分别在x轴,y轴上,∠ABC=90°,OA=OB=1,BC=2,将△ABC绕点O顺时针旋转,每次旋转90°,则第2021次旋转结束时,点C的坐标为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立如图所示的平面直角坐标系后,的顶点均在格点上,且坐标分别为:A(3,3)、B(-1,1)、C(4,1).依据所给信息,解决下列问题:(1)请你画出将向右平移3个单位后得到对应的;(2)再请你画出将沿x轴翻折后得到的;(3)若连接、,请你直接写出四边形的面积.2、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.(1)画出关于x轴对称的,并写出点的坐标(___,___)(2)点P是x轴上一点,当的长最小时,点P坐标为______;(3)点M是直线BC上一点,则AM的最小值为______.3、如图,已知在平面直角坐标系中xOy中,点A(﹣4,0),点B(2n﹣10,m+2),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合.(1)求点B的坐标;(2)将点B向右平移3个单位后得到的点记为点C,点C恰好在直线x=b上,点D在直线x=b上,当△BCD是等腰三角形时,求点D的坐标.4、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点O顺时针旋转90°得到△A2B2C2;(2)按照(1)中②作图,回答下列问题:△A2B2C2中顶点A2坐标为 ,C2坐标为 ,若P(a,b)为△ABC边上一点,则点P对应的点P2的坐标为 .5、在如图所示的平面直角坐标系中,A点坐标为.(1)画出关于y轴对称的;(2)求的面积. -参考答案-一、单选题1、C【解析】【分析】根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.【详解】∵点A的坐标为(1,3),点是点A关于x轴的对称点,∴点的坐标为(1,-3).∵点是将点向左平移2个单位长度得到的点,∴点的坐标为(-1,-3),∴点所在的象限是第三象限.故选C.【点睛】本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.2、C【解析】【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.3、B【解析】【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.4、C【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可求解【详解】解:将点向右平移3单位长度,再向上平移4个单位长度正好与原点重合,,,点A的坐标是,故选:C.【点睛】本题考查了坐标与图形变化平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5、A【解析】【分析】根据平面直角坐标系中,关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数即可求解.【详解】解:点M(1,2)关于x轴的对称点的坐标为(1,-2);故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特征,点P(x,y)关于x轴的对称点P′的坐标是(x,-y).6、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;B、,不是最简二次根式,故原命题是假命题,不符合题意;C、是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.7、B【解析】【分析】根据若两点关于 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点B关于x轴对称,∴点B的坐标是.故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.8、D【解析】【分析】根据点A到y轴的距离是3,得到点A横坐标为-3,根据角的平分线的性质定理,得到点A到x轴的距离为2即点A的纵坐标为2,根据x轴对称的特点确定坐标.【详解】∵点A到y轴的距离是3,∴点A横坐标为-3,过点A作AE⊥OD,垂足为E,∵∠DAO=∠CAO,AC⊥OB,AC=2,∴AE=2,∴点A的纵坐标为2,∴点A的坐标为(-3,2),∴点A关于x轴对称的点的坐标为(-3,-2),故选D.【点睛】本题考查了角的平分线的性质,点到直线的距离,点的轴对称坐标,正确确定点的坐标,熟练掌握对称点坐标的特点是解题的关键.9、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、B【解析】【分析】利用平移中点的变化规律求解即可.【详解】解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),∴点的横坐标减少4,纵坐标增加8,∴先向左平移4个单位长度,再向上平移8个单位长度.故选:B.【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.二、填空题1、0或1##1或0【解析】【分析】根据点M在第二象限,求出a的取值范围,再由格点定义得到整数a的值.【详解】解:∵点M(a﹣2,a+1)在第二象限,∴a-2<0,a+1>0,∴-1<a<2,∵点M为格点,∴a为整数,即a的值为0或1,故答案为:0或1.【点睛】此题考查了象限内点的坐标特点,解不等式组,解题的关键是熟记直角坐标系中各象限内点的坐标特征.2、 5 2【解析】【分析】根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.【详解】解:点到轴的距离为,到轴的距离为2.故答案为:5;2【点睛】本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.3、7【解析】【分析】根据点(x,y)到x轴的距离等于|y|求解即可.【详解】解:点M 到x轴距离为|-7|=7,故答案为:7.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.4、10【解析】【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP=A'P+BP=A'B,此时P点到A、B的距离最小,∵A(0,3),∴A'(0,﹣3),∵B(6,5),5-(-3)=8,6-0=6∴A'B==10,∴P点到A、B的距离最小值为10,故答案为:10.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离是解题的关键.5、【解析】【分析】过点C作 轴于点D,根据 OA=OB=1,∠AOB=90°,可得∠ABO=45°,从而得到∠CBD=45°,进而得到BD=CD=2,,可得到点,再由将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,即可求解.【详解】解:如图,过点C作 轴于点D,∵OA=OB=1,∠AOB=90°,∴∠ABO=45°,∵∠ABC=90°,∴∠CBD=45°,∴∠BCD=45°,∴BD=CD,∵BC=2,∴ ,∴BD=CD=2,∴OD=OB+BD=3,∴点,将△ABC绕点O顺时针旋转,第一次旋转90°后,点,将△ABC绕点O顺时针旋转,第二次旋转90°后,点,将△ABC绕点O顺时针旋转,第三次旋转90°后,点,将△ABC绕点O顺时针旋转,第四次旋转90°后,点, 由此发现,△ABC绕点O顺时针旋转四次一个循环,∵ ,∴第2021次旋转结束时,点C的坐标为.故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)16【解析】【分析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称的点的坐标找出A2、B2、C2的坐标,然后描点即可;(3)运用割补法求解即可【详解】解:(1)如图,即为所作;(2)如图,即为所作;(3)四边形的面积==16【点睛】此题主要考查了轴对称变换以及平移变换和四边形面积求法,根据题意得出对应点位置是解题关键.2、(1)5,-3;(2)(,0);(3)【解析】【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.【详解】解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);故答案为:5,-3;(2)如图,点P为所作.设直线BC1的解析式为y=kx+b,∵点C1的坐标为(5,-3),点B的坐标为(1,2),∴,解得:,∴直线BC1的解析式为y=x+,当y=0时,x=,∴点P的坐标为(,0);故答案为:(,0);(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,△ABC的面积为2×4-×2×1-×4×1-×3×1=;BC=,∵××AM=,∴AM=.故答案为:.【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.3、 (1)B的坐标(-2,4)(2)D的坐标(1,7)或(1,1)【解析】【分析】(1)向右平移m(m>0)个单位,横坐标加m,向上平移n(n>0)个单位,纵坐标加n,根据点B(2n-10,m+2),列出二元一次方程组,得到m、n的值,即可得到点B的坐标;(2)先求出点C的坐标和直线x=b中b的值,设点D(1,x),根据,列出方程,求解即可得到D的坐标.(1)解:∵点A(-4,0),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合,∴点B(-4+m,0+n),又∵点B(2n-10,m+2),∴,解得,∴点B(-2,4).(2)解:∵点B(-2,4),点B向右平移3个单位后得到的点记为点C,∴点C(1,4),∵点C恰好在直线x=b上,∴b=1,直线x=1,∵点D在直线x=1上,∴,设点D(1,x),∵△BCD是等腰三角形,∴,∴,解得或,∴D的坐标(1,7)或(1,1).【点睛】本题考查点的平移引起的点的坐标变化规律.点左右平移只影响横坐标的变化,点上下平移只影响纵坐标的变化.具体如下:设一个点的坐标为(m,n),①若把这个点向左平移k(k>0)个单位后,坐标变为(m-k,n);若把这个点向右平移k个单位后,坐标则变为(m+k,n).②若把这个点向上平移k(k>0)个单位后,坐标变为(m,n+k);若把这个点向下平移k个单位后,坐标则变为(m,n- k).4、 (1)①见解析;②见解析(2)(4,2),(1,3),(b,-a)【解析】【分析】(1)①利用中心对称的性质分别作出A,B,C对应点A1,B1,C1即可.②利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.(2)根据A2,C2的位置写出坐标即可,探究规律,利用规律写出P2坐标即可.(1)解:①如图,△A1B1C1即为所求.②如图,△A2B2C2即为所求.(2)解:点A2坐标为(4,2),C2坐标为(1,3),若P(a,b)为△ABC边上一点,则点P对应的点P2的坐标为(b,-a).故答案为:(4,2),(1,3),(b,-a).【点睛】本题考查了作图旋转变换,中心对称变化等知识,解题的关键是掌握中心对称变换,旋转变换的性质.5、(1)见解析;(2).【解析】【分析】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;(2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.【详解】(1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;(2)S△ABC=3×3=.【点睛】本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.
相关试卷
这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试课堂检测,共25页。试卷主要包含了在平面直角坐标系中,将点A等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试当堂检测题,共20页。试卷主要包含了在下列说法中,能确定位置的是,若点在轴上,则点的坐标为等内容,欢迎下载使用。
这是一份数学第十九章 平面直角坐标系综合与测试达标测试,共22页。试卷主要包含了已知点和点关于轴对称,则的值为,在平面直角坐标系中,点等内容,欢迎下载使用。