初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题
展开
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了若点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P(-3,4)到坐标原点的距离是( )
A.3 B.4 C.-4 D.5
2、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )
A. B. C. D.
3、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为( )
A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)
4、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
5、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
6、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是( )
A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)
7、平面直角坐标系中,点到y轴的距离是( )
A.1 B.2 C.3 D.4
8、小嘉去电影院观看《长津湖》,如果用表示5排7座,那么小嘉坐在7排8座可表示为( )
A. B. C. D.
9、在平面直角坐标系中,点P(-2,1)向右平移3个单位后位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、平面直角坐标系中,下列在第二象限的点是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.
2、在平面直角坐标系中,点A(4,﹣3)到x轴的距离是___.
3、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
4、已知点A(a,-3)与点B(3,b)关于y轴对称,则a+b=_____________________.
5、在平面内画两条互相垂直、原点重合的数轴,组成_______.
水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.
(1)求∠B的度数;
(2)联结BQ,当∠BQC=90°时,求CQ的长;
(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.
2、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).
(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);
(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).
3、在平面直角坐标系中,已知点,,连接AB,将AB向下平移5个单位得线段CD,其中点A的对应点为点C.
(1)填空:点C的坐标为______,线段AB平移到CD扫过的面积为______;
(2)若点P是y轴上的动点,连接PD.
①如图(1),当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由;
②当PD将四边形ACDB的面积分成2:3两部分时,求点P的坐标.
4、已知:在平面直角坐标系中,点A(m,n),且m、n满足关系式m=,点B(﹣3,0),点C在x轴正半轴上,AC交y轴于点E.
(1)点A的坐标为( , );
(2)如图1,若S△ABC=15,求线段BC的长;
(3)如图2,在(2)的条件下,点E处有一动点P以每秒2个单位长度的速度先沿线段EO运动到点O,再继续以相同的速度沿x轴负半轴运动到点B后停止运动,求当t为何值时,S△AOE=S△BEP.
5、如图1,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,点P在直线AB上,点A、P的坐标分别为,,且a、b是二元一次方程组的解.
(1)求出A、P的坐标;
(2)求OB的长;
(3)如图2,点C在第一象限,,且,,动点M从点C出发,以每秒2个单位长度的速度向点B匀速运动,到达点B(无停留,速度保持不变)再沿射线BO匀速运动,动点N从点A出发,以每秒5个单位长度的速度沿射线AB方向匀速运动,点M、N同时出发,当的面积等于的面积的2倍时,求的面积.
-参考答案-
一、单选题
1、D
【解析】
【分析】
利用两点之间的距离公式即可得.
【详解】
解:点到坐标原点的距离是,
故选:D.
【点睛】
本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.
2、D
【解析】
【分析】
如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.
【详解】
解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D
∵
∴
在和中
∴
∴
∴B点坐标为
故选D.
【点睛】
本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.
3、C
【解析】
【分析】
连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.
【详解】
解:如图,连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,
由旋转可知:∠MOM1=90°,OM=OM1,
则∠AOM1+∠BOM=90°,
又∠AOM1+∠AM1O=90°,
∴∠AM1O=∠BOM,
又∵∠OAM1=∠OBM=90°,OM=OM1,
∴△OAM1≌△MBO(AAS),
∴OA=BM=1,AM1=OB=2,
∴M1(2,1),
故选C.
【点睛】
本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.
4、C
【解析】
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
5、A
【解析】
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
6、C
【解析】
【分析】
根据轴对称的性质解决问题即可.
【详解】
解:∵△ABC关于直线y=1对称,
∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,
∵点A的坐标是(3,4),
∴B(3,﹣2),
故选:C.
【点睛】
本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.
7、A
【解析】
【分析】
根据点到轴的距离是横坐标的绝对值,可得答案.
【详解】
解:∵,
∴点到轴的距离是
故选:A
【点睛】
本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.
8、B
【解析】
【分析】
根据题意可知“坐标的第一个数表示排,第二个数表示座”,然后用坐标表示出小嘉的位置即可.
【详解】
解:∵用表示5排7座
∴坐标的第一个数表示排,第二个数表示座
∴小嘉坐在7排8座可表示出(7,8).
故选B.
【点睛】
本题主要考查了坐标的应用,根据题意得知“坐标的第一个数表示排,第二个数表示座”是解得本题的关键.
9、A
【解析】
【分析】
求出点P平移后的坐标,继而可判断点P的位置.
【详解】
解:点P(-2,1)向右平移3个单位后的坐标为(1,1),
点(1,1)在第一象限.
故选:A.
【点睛】
本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
10、C
【解析】
【分析】
由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.
【详解】
解:A、点(1,0)在x轴,故本选项不合题意;
B、点(3,-5)在第四象限,故本选项不合题意;
C、点(-1,8)在第二象限,故本选项符合题意;
D、点(-2,-1)在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
二、填空题
1、
【解析】
【分析】
利用直角三角形的性质和勾股定理求出OC和AC的长,再运用三角形面积公式求出即可.
【详解】
解:∵AC⊥OB,
∴
∵∠AOB=60°,
∴
∵OA=4,
∴
在Rt△ACO中,
∴
故答案为:
【点睛】
本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC和AC的长是解答本题的关键.
2、3
【解析】
【分析】
根据点到x轴的距离等于纵坐标的绝对值解答即可.
【详解】
解:点A(4,﹣3)到x轴的距离是3.
故答案为:3.
【点睛】
本题考查点到坐标轴的距离,熟知点到坐标轴的距离与横(纵)坐标的关系是解答的关键.
3、(2021,0)
【解析】
【分析】
将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.
【详解】
∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得
∴A1点坐标为(2,0)
又∵A2为A1点绕O点顺时针旋转90°所得
∴A2点坐标为(0,-2)
又∵A3为A2点绕C点顺时针旋转90°所得
∴A3点坐标为(-3,1)
又∵A4为A3点绕A点顺时针旋转90°所得
∴A4点坐标为(1,5)
由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.
∵2021÷4=505…1
故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得
故A2021点坐标为(2021,0).
故答案为:(2021,0).
【点睛】
本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.
4、
【解析】
【分析】
由点A(a,-3)与点B(3,b)关于y轴对称,可得从而可得答案.
【详解】
解: 点A(a,-3)与点B(3,b)关于y轴对称,
故答案为:
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
5、 平面直角坐标系 横轴 右 纵轴 上 原点 O
【解析】
略
三、解答题
1、 (1)30°
(2)
(3)y=(0<x<6)
【解析】
【分析】
(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;
(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;
(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.
(1)
解:,,,
,,
,
,
,
;
(2)
解:点关于直线的对称点为点,
垂直平分,
,
,
,
,
,
,
.
;
(3)
解:过点作于点,
,,
为等边三角形,
,,
,
,
,
,,
,
关于的函数解析式为.
【点睛】
本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.
2、(1)图见解析;(2)图见解析.
【解析】
【分析】
(1)先根据平移分别画出点,再顺次连接即可得;
(2)先根据轴对称的性质画出点A2,B2,C2,再顺次连接即可得.
【详解】
解:(1)如图,即为所求;
(2)如图,即为所求.
【点睛】
本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.
3、 (1) (2,-1) 20
(2)①S△PEC=S△ECD,理由见解析;②点P坐标为(0,5)或(0,678).
【解析】
【分析】
(1)先根据线段向下平移5个单位可得A的纵坐标减去5,横坐标不变,可得的坐标,再求解的长度,乘以平移距离即可得到平移后线段AB扫过的面积;
(2)①先求出PF=2,再用三角形的面积公式得出S△PEC=CE,S△ECD=2CE,即可得出结论;②分DP交线段AC和交AB两种情况,利用面积之差求出△PCE和△PBE,最后用三角形面积公式即可得出结论.
(1)
解:∵A(2,4),B(6,4),将AB向下平移5个单位得线段CD,
∴C(2,-1),AB=6-2=4,
线段AB平移到CD扫过的面积为:4×5=20.
故答案为:(2,-1),20
(2)
①如图1,过P点作PF⊥AC于F,
由平移知,AC∥y轴,
∵A(2,4),
∴PF=2,
由平移知,CD=AB=4,
∴S△PEC=CE•PF=CE×2=CE,S△ECD=CE•CD=CE×4=2CE,
∴S△ECD=2S△PEC,
即:S△PEC=S△ECD;
②(ⅰ)如图2,当PD交线段AC于E,且PD将四边形ACDB分成面积为2:3两部分时,
连接PC,延长DC交y轴于点M,则M(0,﹣1),
∴OM=1,
连接AC,则S△ACD=S长方形ABDC=10,
∵PD将四边形ACDB的面积分成2:3两部分,
∴S△CDE=25S矩形ABDC=25×20=8,
由①知,S△PEC=S△ECD=×8=4,
∴S△PCD=S△PEC+S△ECD=4+8=12,
∵S△PCD=CD•PM=×4PM=12,
∴PM=6,
∴PO=PM﹣OM=6﹣1=5,
∴P(0,5).
(ⅱ)如图3,当PD交AB于点F,PD将四边形ACDB分成面积为2:3两部分时,
连接PB,延长BA交y轴于点G,则G(0,4),
∴OG=4,连接AC,则S△ABD=S长方形ABDC=10,
∵PD将四边形ACDB的面积分成2:3两部分,
∴S△BDE=25S矩形ABDC=25×20=8,
∵S△BDE=BD•BE=×5BE=8,
∴BE=165
过P点作PH⊥BD交DB的延长线于点H,
∵B(6,4),
∴PH=6
S△PDB=BD×PH=×5×6=15,
∴S△PBE=S△PDB﹣S△BDE=15﹣8=7,
∵S△PBE=BE•PG=12×165PG=7,
∴PG=358,
∴PO=PG+OG=358+4=678,
∴P(0,678),
即:点P坐标为(0,5)或(0,678).
【点睛】
此题是几何变换综合题,主要考查了平移的坐标变换,长方形的性质,坐标与图形,三角形的面积公式,清晰的分类讨论的思想是解本题的关键.
4、 (1)﹣1,5
(2)BC=6
(3)t的值为或
【解析】
【分析】
(1)根据二次根式的被开方数非负可得关于n的不等式组,解不等式组可求得n的值,从而求得m的值,最后可求得点A的坐标;
(2)过点A作AF⊥x轴于点F,由点A的坐标可得AF的长,由面积条件即可求得BC的长;
(3)由BC的长度及点B的坐标可求得点C的坐标,由S△AOB+SAOE+S△EOC=S△ABC=15可求得OE的长;分点P在OE上和点P在OB上两种情况考虑,求出△BEP的面积表达式,再根据题中的面积关系式即可求得时间t.
(1)
∵m、n满足关系式,
∴,
∴n=5,
∴m=﹣1,
故答案为:﹣1,5;
(2)
过点A作AF⊥x轴于点F,
∵A(﹣1,5),
∴AF=5,
∴S△ABC=,
∴BC=6;
(3)
∵BC=6,B(﹣3,0),
∴C(3,0),
∵S△AOB+SAOE+S△EOC=S△ABC=15,
∴,
∴OE=,
①若点P在OE上,则PE=2t,
∴S△BEP=×2t×3=3t,S△AOE=,
∴,
∴;
②若点P在OB上,BP=3+﹣2t=﹣2t,
∴S△BEP==,
∴,
∴t=.
综合以上可得t的值为或.
【点睛】
本题考查了坐标与图形的面积,二次根式的意义,涉及分类讨论思想.
5、 (1)A(8,0),P(-4, 9)
(2)6;
(3)24或60
【解析】
【分析】
(1)解方程组可求a, b的值,即可求解;
(2)由面积关系可求解;
(3)分两种情况讨论,由面积法可求OE的长,由面积关系可求解.
(1)
解:
解这个方程组得:
∴2a=2×4=8,-a=-4,3b=3×3=9,
∴A(8,0),P(-4, 9);
(2)
如图1,过点P作PH⊥x轴于H,连接BH,
∵A(8,0),P(-4, 9),
∴OA=8,ОН=4,PH=9,
∴S△APH = S△ABH + SPHB ,
∴
∴OB=6;
(3)
设运动时间为ts,
∴BC=OВ,
∴BC= 4,
当0≤ t ≤2吋,如图2,过点O作OE⊥AB于 E,
∴S△AOB=
∴
∴S△AON =
∴S△ABM=
∵△ AON的面积等于△ABM的面积的2倍,
∴12t=2 (12-6t),
∴t= 1,
∴S△PON = S△AOP-S△AON =;
当t > 2时,如图3,
∴S△ABM= ,
∵△ AON的面积等于△ABM的面积的2倍,
∴12t=2×(8t- 16),
∴t= 8,
∴S△PON = S△AON-S△AOP =;
综上所述:△PON的面积为24或60.
【点睛】
本题考查了平面直角坐标系,三角形综合题,二元一次方程组的应用,三角形的面积公式,利用分类讨论思想解决问题是本题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试练习,共21页。试卷主要包含了在平面直角坐标系中,点,点关于轴对称点的坐标为等内容,欢迎下载使用。
这是一份初中冀教版第十九章 平面直角坐标系综合与测试同步达标检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,在平面直角坐标系xOy中,点A,若点在轴上,则点的坐标为,在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试复习练习题,共25页。试卷主要包含了在平面直角坐标系中,点A,若平面直角坐标系中的两点A,在平面直角坐标系中,A,下列命题中为真命题的是等内容,欢迎下载使用。