初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题
展开这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试课后练习题,共31页。试卷主要包含了在平面直角坐标系中,点A,点A的坐标为,则点A在等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点向上平移2个单位后与点关于y轴对称,则( ).
A.1 B. C. D.
2、将含有角的直角三角板按如图所示的方式放置在平面直角坐标系中,在x轴上,若,将三角板绕原点O逆时针旋转,每秒旋转,则第2022秒时,点A的对应点的坐标为( )
A. B. C. D.
3、在平面直角坐标系中,将点(3,-4)平移到点(-1,4),经过的平移变换为( )
A.先向左平移4个单位长度,再向上平移4个单位长度
B.先向左平移4个单位长度,再向上平移8个单位长度
C.先向右平移4个单位长度,再向下平移4个单位长度
D.先向右平移4个单位长度,再向下平移8个单位长度
4、在平面直角坐标系中,点A(2,3)关于x轴的对称点为点B,则点B的坐标是( )
A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)
5、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
6、点A的坐标为,则点A在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为( )
A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)
8、如果点在第四象限内,则m的取值范围( )
A. B. C. D.
9、平面直角坐标系中,点到y轴的距离是( )
A.1 B.2 C.3 D.4
10、如图是北京地铁部分线路图.若崇文门站的坐标为,北海北站的坐标为,则复兴门站的坐标为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点M(1,a)与点N(b,3)关于y轴对称,则a=___,b=___.
2、已知点A关于x轴的对称点B的坐标为(1,﹣2),则点A的坐标为_____.
3、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
4、在平面直角坐标系中,若点P的坐标为(x,y),点Q的坐标为(mx+y,x+my),则称点Q是点P的m级派生点,例如点P(1,2)(3×1+2,1+3×2),即Q(5,7).如图点Q(﹣5,4)是点P(x,y)的﹣级派生点,点A在x轴上,且S△APQ=4,则点A的坐标为 _____.
5、点P(5,﹣4)到x轴的距离是___.
三、解答题(5小题,每小题10分,共计50分)
1、对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为,定义为该三角形关于直线l的对称度.如图,将面积为S的ABC沿直线l折叠,重合部分的图形为,将的面积记为,则称为ABC关于直线l的对称度.
在平面直角坐标系xOy中,点A(0,3),B(-3,0),C(3,0).
(1)过点M(m,0)作垂直于x轴的直线,
①当时,ABC关于直线的对称度的值是 :
②若ABC关于直线的对称度为1,则m的值是 .
(2)过点N(0,n)作垂直于y轴的直线,求△ABC关于直线的对称度的最大值.
(3)点P(-4,0)满足,点Q的坐标为(t,0),若存在直线,使得APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.
2、如图,在平面直角坐标系中,边长为4的正方形在第一象限内,点、分别在轴、轴上,设点是轴上异于点、的点,过点作∠MBN=45°,的另一边一定在边的左边或上方且与轴交于点,设.
(1)直接写出的范围;
(2)若点为轴上的动点,结合图形,求(用含的式子表示);
(3)当点为轴上的动点时,求的周长的最小值,并说明此时点的位置.
3、对于平面直角坐标系中的线段,给出如下定义:线段上所有的点到轴的距离的最大值叫线段的界值,记作.如图,线段上所有的点到轴的最大距离是3,则线段的界值.
(1)若A(-1,-2),B(2,0),线段的界值__________,线段关于直线对称后得到线段,线段的界值为__________;
(2)若E(-1,m),F(2,m+2),线段关于直线对称后得到线段;
①当时,用含的式子表示;
②当时,的值为__________;
③当时,直接写出的取值范围.
4、如图,在平面直角坐标系中有,两点,坐标分别为,,已知点的坐标为
(1)确定平面直角坐标系,并画出;
(2)请画出关于轴对称的图形,并直接写出的面积;
(3)若轴上存在一点,使的值最小.请画图确定点的位置,并直接写出的最小值.
5、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
-参考答案-
一、单选题
1、D
【解析】
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
2、C
【解析】
【分析】
求出第1秒时,点A的对应点的坐标为(0,4),由三角板每秒旋转,得到此后点的位置6秒一循环,根据2022除以6的结果得到答案.
【详解】
解:过点A作AC⊥OB于C,
∵,∠AOB=,
∴,
∴,
∴A.
∵,∠AOB=,将三角板绕原点O逆时针旋转,每秒旋转,
∴第1秒时,点A的对应点的坐标为,
∵三角板每秒旋转,
∴此后点的位置6秒一循环,
∵,
∴则第2022秒时,点A的对应点的坐标为,
故选:C
【点睛】
此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点的位置6秒一循环是解题的关键.
3、B
【解析】
【分析】
利用平移中点的变化规律求解即可.
【详解】
解:∵在平面直角坐标系中,点(3,-4)的坐标变为(-1,4),
∴点的横坐标减少4,纵坐标增加8,
∴先向左平移4个单位长度,再向上平移8个单位长度.
故选:B.
【点睛】
本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
4、C
【解析】
【分析】
平面直角坐标系中,点关于x轴对称的点的特点是横坐标不变,纵坐标变为原数相反数,据此解题.
【详解】
解:点A(2,3)关于x轴的对称的点B(2,﹣3),
故选:C.
【点睛】
本题考查平面直角坐标系中,点关于x轴对称的点,是基础考点,难度较易,掌握相关知识是解题关键.
5、B
【解析】
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
6、A
【解析】
【分析】
应先判断出点的横纵坐标的符号,进而判断点所在的象限.
【详解】
解:由题意,
∵点A的坐标为,
∴点A在第一象限;
故选:A
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
7、D
【解析】
【分析】
点P在y轴上则该点横坐标为0,据此解答即可.
【详解】
∵y轴负半轴上的点P到x轴的距离为2,
∴点P的坐标为(0,﹣2).
故选:D.
【点睛】
本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
8、A
【解析】
【分析】
根据第四象限点的横坐标为正,纵坐标为负,列不等式即可求解.
【详解】
解:∵点在第四象限内,
∴,
解得,;
故选:A.
【点睛】
本题考查了不同象限内点的坐标的特征,解题关键是明确第四象限点的横坐标为正,纵坐标为负.
9、A
【解析】
【分析】
根据点到轴的距离是横坐标的绝对值,可得答案.
【详解】
解:∵,
∴点到轴的距离是
故选:A
【点睛】
本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.
10、B
【解析】
【分析】
根据已知点坐标确定直角坐标系,即可得到答案.
【详解】
由题意可建立如图所示平面直角坐标系,
则复兴门站的坐标为.
故选:.
【点睛】
此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.
二、填空题
1、 3
【解析】
【分析】
根据平面直角坐标系中两个点关于坐标轴成轴对称的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数,据此直接求解即可.
【详解】
解:∵点与点关于y轴对称,
∴,,
故答案为:3;.
【点睛】
题目主要考查平面直角坐标系中两个点关于坐标轴成轴对称的特点,理解对称点的坐标规律是解题关键.
2、
【解析】
【分析】
根据“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”,求解即可
【详解】
解:∵点A关于x轴的对称点B的坐标为(1,﹣2),
∴点A的坐标为
故答案为:
【点睛】
本题考查了关于x轴对称的点的坐标特征,掌握“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”是解题的关键.
3、 (4,2) (0,4)或(0,-4)
【解析】
【分析】
根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
【详解】
解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
∴点D的坐标为(4,2);
同理可得点C的坐标为(0,2),
∴OC=2,
∵A(-1,0),B(3,0),
∴AB=4,
∴,
设点P到AB的距离为h,
∴S△PAB=×AB×h=2h,
∵S△PAB=S四边形ABDC,
得2h=8,解得h=4,
∵P在y轴上,
∴OP=4,
∴P(0,4)或(0,-4).
故答案为:(4,2);(0,4)或(0,-4).
【点睛】
本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
4、 (6,0)或(2,0)
【解析】
【分析】
根据派生点的定义,可列出关于x,y的二元一次方程,求出x、y,即得出P点的坐标.设点A坐标为(t,0),根据,即可列出,解出t的值,即得到A点坐标.
【详解】
根据点Q(-5,4)是点P(x,y)的级派生点,
∴,
解得:,
∴P点坐标为(4,0).
设点A坐标为(t,0),
∵,
∴,
解得:或
∴A点坐标为(6,0)或(2,0).
故答案为(6,0)或(2,0).
【点睛】
本题考查坐标与图形的性质,二元一次方程组的应用以及绝对值方程的应用.理解派生点的定义,根据派生点求出P点坐标是解答本题的关键.
5、4
【解析】
【分析】
根据点的纵坐标的绝对值就是点到x轴的距离即可求解
【详解】
点P(5,﹣4)到x轴的距离是4
故答案为:4
【点睛】
本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.
三、解答题
1、(1)①;②0;(2);(3)4或1
【解析】
【分析】
(1)①作图,求出,再根据定义求值即可;②通过数形结合的思想即可得到;
(2)根据求△ABC关于直线的对称度的最大值,即是求最大值即可;
(3)存在直线,使得APQ关于该直线的对称度为1,即转变为APQ是等腰三角形,需要分类进行讨论,分;;,同时需要满足t的值为整数.
【详解】
解:(1)①当时,根据题意作图如下:
,
为等腰直角三角形,
,
,
根据折叠的性质,
,
,
关于直线的对称度的值是:,
故答案是:;
②如图:
根据等腰三角形的性质,当时,有
,
ABC关于直线的对称度为1,
故答案是:0;
(2)过点N(0,n)作垂直于y轴的直线,要使得△ABC关于直线的对称度的最大值,
则需要使得最大,如下图:
当时,取到最大,
根据,可得为的中位线,
,
,
△ABC关于直线的对称度的最大值为:;
(3)若存在直线,使得APQ关于该直线的对称度为1,
即为等腰三角形即可,
①当时,为等腰三角形,如下图:
,
;
②当时,为等腰三角形,如下图:
,
;
③当时,为等腰三角形,如下图:
设,则,
根据勾股定理:,
,
解得:,
(不是整数,舍去),
综上:满足题意的整数的值为:4或1.
【点睛】
本题考查了三角形的折叠,对称类新概念问题、等腰三角形的性质、勾股定理,解题的关键是读懂题干信息,搞懂对称度的概念,再结合数形结合及分类讨论的思想进行求解.
2、 (1)或
(2)或
(3)只有当点在轴的正半轴上且在点的左边时, 的周长取得最小值且为8.
【解析】
【分析】
(1)先确定点在轴上的范围,再确定的范围即可;
(2)分类讨论,结合平行线的性质,求出或的度数即可;
(3)当点在点、之间时,过点作且交轴于点,证,得出的周长为8,再说明其他时候周长大于8即可.
(1)
解:∵的另一边一定在边的左边或上方且与轴交于点,
∴当点的坐标为(8,0)时,如图所示,此时,∠MBA=45°,
∴BN∥OC,
∴的另一边与轴没有交点,
∴点一定在(8,0)左侧,
当点与点重合时,点与点重合,此时,;当点与点重合时,点与点重合,此时,;
所以,的范围是或;
(2)
解:当点在点、之间时,此时,
∵BC∥OA,
∴,
∵∠MBN=45°,
∴,
,
∵与互余,
,
当点在点的左边时,此时,
同理可得,,
;
当点在点的右边且在(8,0)左侧时,据题意,同理可得,,
则,
;
(3)
解:当点在点、之间时,如图①,
过点作且交轴于点,
,,
,
又,,
,
,,又,,
,
,而的周长为,
当点在点的左边时,如图②,
必有,,
,
而,,故,
当点在点的右边时,如图③,则,,
,而,,
,
综上所述,只有当点在轴的正半轴上且在点的左边时,
的周长取得最小值且为8.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是构建全等三角形,利用全等三角形的性质进行推理证明.
3、 (1)2,6
(2)①=4-m;1,5;,
【解析】
【分析】
(1)由对称的性质求得C、D点的坐标即可知.
(2)由对称的性质求得G点坐标为(-1,4-m),H点坐标为(2,2-m)
①因为,故4-m>2-m>0,则=4-m
②需分类讨论和的值大小,且需要将所求m值进行验证.
③需分类讨论,当,则且,当,则且,再取公共部分即可.
(1)
线段 上所有的点到轴的最大距离是2,则线段的界值
线段AB关于直线对称后得到线段,C点坐标为(-1,6),D点坐标为(2,4),线段CD 上所有的点到轴的最大距离是6,则线段的界值
(2)
设G点纵坐标为a,H点纵坐标为b
由题意有,
解得a=4-m,b=2-m
故G点坐标为(-1,4-m),H点坐标为(2,2-m)
①当,4-m>2-m>0
故=4-m
②若,则
即m=1或m=7
当m=1时,,,符合题意
当m=7时,,,,不符合题意,故舍去.
若,则
即m=-1或m=5
当m=-1时,,,,不符合题意,故舍去
当m=5时,,,符合题意.
则时,的值为1或5.
③当,则且
故有,
解得,
,
解得
故,
解得
故
当,则且
故有,
解得,
,
解得
故,
解得
故
综上所述,当时, 的取值范围为和.
【点睛】
本题考查了坐标轴中对称变化和含绝对值的不等式,本题不但要分类讨论4-m和2-m的大小关系,还有去绝对值的情况是解题的关键.的解集为,的解集为,.
4、 (1)图见解析;
(2)图见解析,的面积为6;
(3)点M的位置见解析,的最小值为
【解析】
【分析】
(1)根据A、B两点的坐标确定平面直角坐标系,再描出点C的坐标,然后顺次连接A、B、C三点即可画出△ABC;
(2)根据坐标与图形变换-轴对称即可画出,根据对称性质求解△ABC的面积即可;
(3)连接AB1交x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,最小值为AB1的长,利用点A、B坐标求解AB1即可.
(1)
解,如图,平面直角坐标系和△ABC即为所求:
(2)
解:如图,即为所求:
由图知:=S△ABC==6;
(3)
解:如图,连接AB1交x轴于M,根据两点之间线段最短知,此时的点M使得的值最小,即点M即为所求,最小值为AB1的长,
∵A(2,3)、B1(6,-1),
∴AB1==,
∴的最小值为.
【点睛】
本题考查平面直角坐标系、作图-轴对称变换、坐标与图形、轴对称-最短路线问题、三角形的面积公式,正确作出图形是解答的关键.
5、(1)(4,﹣1);(2)见解析;(3)见解析.
【解析】
【分析】
(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
【详解】
(1)点B关于原点对称的点B′的坐标为(4,﹣1),
故答案为:(4,﹣1);
(2)如图所示,△A1B1C1即为所求.
(3)如图所示,△A2B2C2即为所求.
【点睛】
本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
相关试卷
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练,共22页。试卷主要包含了已知点P的坐标为,在平面直角坐标系中,点A,如图,树叶盖住的点的坐标可能是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共20页。试卷主要包含了在平面直角坐标系中,点,点关于轴的对称点是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试巩固练习,共28页。试卷主要包含了12,则第三边长为13;等内容,欢迎下载使用。