搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版八年级数学下册第十九章平面直角坐标系重点解析试卷(无超纲带解析)

    精品试题冀教版八年级数学下册第十九章平面直角坐标系重点解析试卷(无超纲带解析)第1页
    精品试题冀教版八年级数学下册第十九章平面直角坐标系重点解析试卷(无超纲带解析)第2页
    精品试题冀教版八年级数学下册第十九章平面直角坐标系重点解析试卷(无超纲带解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十九章 平面直角坐标系综合与测试课后复习题

    展开

    这是一份2020-2021学年第十九章 平面直角坐标系综合与测试课后复习题,共27页。试卷主要包含了下列命题为真命题的是,点关于轴的对称点是等内容,欢迎下载使用。
    八年级数学下册第十九章平面直角坐标系重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为(       A. B. C. D.2、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有(  )A.6个 B.7个 C.8个 D.9个3、在平面直角坐标系中,点关于轴的对称点的坐标是(       A. B. C. D.4、下列命题为真命题的是(       A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,则C.的算术平方根是9 D.点一定在第四象限5、若点P位于平面直角坐标系第四象限,且点Px轴的距离是1,到y轴的距离是2,则点P的坐标为(          A. B. C. D.6、点向上平移2个单位后与点关于y轴对称,则       ).A.1 B. C. D.7、平面直角坐标系中,下列在第二象限的点是(       A. B. C. D.8、如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是(  )A.(3,﹣4) B.(﹣3,2) C.(3,﹣2) D.(﹣2,4)9、点关于轴的对称点是(       A. B. C. D.10、已知点与点关于y轴对称,则的值为(     A.5 B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),则2a+4b+3的值为______.2、如果点关于轴的对点的坐标为,则______.3、如图,在平面直角在坐标系中,四边形OACB的两边OAOB分别在x轴、y轴的正半轴上,其中,且CO平分,若,则点C的坐标为______.4、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么AB两点的距离等于______.5、在平面直角坐标系中,把点向右平移2个单位到点B,则点B位于第______象限.三、解答题(5小题,每小题10分,共计50分)1、设两个点AB的坐标分别为,则线段AB的长度为:.举例如下:AB两点的坐标是,则AB两点之间的距离.请利用上述知识解决下列问题:(1)若,且,求x的值;(2)已知△ABC,点A、点B、点C,求△ABC的面积;(3)求代数式的最小值.2、如图,平面直角坐标系中,每个小正方形的边长都是1.(1)请画出关于轴对称的轴对称图形;并写出点三点的坐标;(2)在轴、轴上找到与点距离相等的点(要求:尺规作图,不写画法,保留作图痕迹).3、如图,在平面直角坐标系中,点O为坐标原点,点中的横坐标x与纵坐标y满足,过点Ax轴的垂线,垂足为点D,点Ex轴的负半轴上,且满足,线段AEy轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DFFGDG,若点G的纵坐标为m,三角形DFG的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当时,动点PD出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点QA出发,以每秒2个单位的速度沿着折线向终点C运动,PQ两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标.4、定义:若实数xy,满足k为常数,),则在平面直角坐标系中,称点为点的“k值关联点”.例如,点是点的“4值关联点”.(1)判断在两点中,哪个点是的“k值关联点”;(2)设两个不相等的非零实数mn满足点是点的“k值关联点”,则_______________5、在平面直角坐标系xOy中,将点x轴和y轴的距离的较大值定义为点M的“相对轴距”,记为.即:如果,那么;如果,那么.例如:点的“相对轴距”(1)点的“相对轴距”______;(2)请在图1中画出“相对轴距”与点的“相对轴距”相等的点组成的图形;(3)已知点,点MN内部(含边界)的任意两点.①直接写出点M与点N的“相对轴距”之比的取值范围;②将向左平移个单位得到,点与点内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,请直接写出k的取值范围. -参考答案-一、单选题1、D【解析】【分析】如图过点AAC垂直于y轴交点为C,过点BBD垂直于y轴交点为D,故有,进而可得B点坐标.【详解】解:如图过点AAC垂直于y轴交点为C,过点BBD垂直于y轴交点为D   B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.2、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.3、B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.4、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果abbc,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.6、D【解析】【分析】利用平移及关于y轴对称点的性质即可求解.【详解】解:把向上平移2个单位后得到点∵点与点关于y轴对称,故选:D.【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.7、C【解析】【分析】由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.【详解】解:A、点(1,0)在x轴,故本选项不合题意;B、点(3,-5)在第四象限,故本选项不合题意;C、点(-1,8)在第二象限,故本选项符合题意;D、点(-2,-1)在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、C【解析】【分析】根据轴对称的性质解决问题即可.【详解】解:∵△ABC关于直线y1对称,∴点A和点B是关于直线y=1对称的对应点,它们到y=1的距离相等是3个单位长度,∵点A的坐标是(34),B3,﹣2),故选:C【点睛】本题主要考查了坐标的对称特点.解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标.9、A【解析】【分析】直接利用关于x轴对称点的性质得出答案.【详解】解:点P(−4,9)关于x轴对称点P′的坐标是:(−4,−9).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确得出横纵坐标的关系是解题关键.10、A【解析】【分析】点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.【详解】解:由题意知:解得故选A.【点睛】本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.二、填空题1、15【解析】【分析】直接利用平移中点的变化规律求得a+2b=6,再整体代入求解即可.【详解】解:∵把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),a-1-3=2-2b,即a+2b=6,∴2a+4b+3=2(a+2b)+3=15,故答案为:15.【点睛】本题考查了坐标系中点、线段的平移规律以及代数式的求值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2、1【解析】【分析】根据轴对称的性质得到a=3,b=2,代入计算即可.【详解】解:由题意得a=3,b=2,3-2=1,故答案为:1.【点睛】此题考查了轴对称的性质:关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的横坐标互为相反数,纵坐标相等.3、【解析】【分析】AB的中点E,连接OECE并延长交x轴于点F,根据直角三角形斜边 上的中线等于斜边的一半证明CE=OE=AE,再进一步证明;由勾股定理求出AB=AO=BO=5;过点OOGOCCA的延长线于点G,证明△COG访问团等腰直角三角形,可可求出OC=7;过点CCHx轴,垂足为H,设Cmn),则OH=mCH=nAH=5-m,根据勾股定理可得方程组 ,求出方程组的解,取正值即可.【详解】解:取AB的中点E,连接OECE并延长交x轴于点F,如图,OC平分∠ACB 均为直角三角形, 是等腰直角三角形, 由勾股定理得, 过点OOEOCCA的延长线于点G∵∠OCA=45°,∴∠G=45°,∴△COG为等腰直角三角形,OC=OG∵∠BOC+∠COA=∠COA+∠AOG=90°,∴∠BOC=∠AOG∵∠OCB=∠OEA=45°,∴△COB≌△GOAASA),BC=AG=CG=AC+AG=∵△OCE为等腰直角三角形,OC=7过点CCHx轴于点H,设Cmn),OH=mCH=nAH=5-mRtCHORtCHA中,由勾股定理得,解得,(负值舍去)C故答案为:(【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.4、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,故答案为:【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,斜边长为,那么5、四【解析】【分析】根据平移规律求得点B的坐标,即可求解.【详解】解:把点向右平移2个单位到点B,则,从而得到点B,在第四象限,故答案为:四【点睛】此题考查了平面直角坐标系点的平移变换以及各象限的点的坐标规律,解题的关键是掌握平移规律求得点B的坐标.三、解答题1、 (1)(2)△ABC的面积为5(3)13【解析】【分析】(1)直接利用两点之间的距离公式计算即可;(2)利用两点之间的距离公式可求得ABBCAC的线段长度,利用勾股定理的逆定理可判断出△ABC为直角三角形,然后利用直角三角形的面积计算公式计算即可;(3)所求代数式可以看成是点与点的距离和点与点的距离之和,最短为点与点的距离之和,依此求解.(1)解:∵又∵,且(2)解:∴△ABC为直角三角形,(3)解:∵∴该代数式可看成是点与点的距离和点与点的距离之和,当点在点与点连接的线段上时最短为的最小值为13.【点睛】本题考查两点之间的距离,勾股定理和逆定理的应用,最短路线问题.(1)中理解题意,正确计算是解题关键;(2)中能计算三条线段长度,并判断三角形为直角三角形是解题关键;(3)中需注意因为带着平方,所以点和点不是唯一的,但因为点的纵坐标为0,所以必须保证上述两点的纵坐标一正一负,点才有可能在它们连接后的线段上.2、(1)图见解析,;(2)见解析【解析】【分析】(1)先分别作出关于轴对称的点,再依次连接即可,坐标观察图形即可得出;(2)作BC的垂直平分线即可.【详解】(1)图形如下:(2)作BC的垂直平分线与轴、轴的交点即为【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握关于轴对称的轴坐标特点.垂直平分线的作法:分别以B、C为圆心,相同半径画弧,再连接弧的交点.3、 (1)A(2,8),E(-6,0);(2)S=m+24;(3)点P坐标为(2,)或(2,)或(2,【解析】【分析】(1)根据求出xy,得到A的坐标,根据,求出OE得到E的坐标;(2)由DE=6=AD,求出OF=OE=6,根据平移的性质得到CD=8,G(10,m),延长BAy轴于H,则BHy轴,则OH=AD=8,求出HF=2,根据三角形DFG的面积为S=代入数值求出答案;(3)由求得 G(10,2),设运动时间为t秒,分两种情况:当时,当时,利用面积加减关系求出△FGP与△AGQ的面积,得方程求解即可.(1)解:∵x-2=0,y-8=0,x=2,y=8,A(2,8),AD=8,OD=2,OE=8-2=6,E(-6,0);(2)解:∵OD=2,OE=6,DE=6=ADADx轴,∴∠AED=∠EAD=45°,∵∠EOF=90°,∴∠EFO=45°=∠OEFOF=OE=6,∵将线段AD向右平移8个单位长度,得到线段BCB(10,8),C(10,0),BCx轴,x轴,CD=8,G(10,m),延长BAy轴于H,则BHy轴,则OH=AD=8, HF=2,三角形DFG的面积为S===m+24; (3)解:当时,m+24=26,m=2,∴G(10,2),设运动时间为t秒,时,∵三角形FGP的面积是三角形AGQ面积的2倍,t=P(2,);时,t=t=P(2,)或P(2,),综上,点P坐标为(2,)或(2,)或(2,).【点睛】此题考查了算术平方根的非负性,绝对值的非负性,线段平移的性质,三角形面积的计算公式,图形中动点问题,解题中注意运用分类思想解决问题是关键,避免漏解的现象.4、 (1)(2)3【解析】【分析】(1)根据“k值关联点”的含义,只要找到k的值,且满足即可作出判断,这只要根据,若两式求得的k的值相等则是,否则不是;(2)根据“k值关联点”的含义得到两个等式,消去k即可求得mn的值.(1)对于点A∴点不是的“k值关联点”;对于点B:∴点的“值关联点”;(2)∵点是点的“k值关联点”得:故答案为:3【点睛】本题是材料题,考查了点的坐标,消元思想,关键是读懂题目,理解题中的“k值关联点”的含义.5、 (1)2;(2)见详解;(3)①;②【解析】【分析】(1)根据题意正确写出答案即可;(2)根据题意画出图形即可;(3)①正确画出图形,根据题意分别求出的最大值和最小值,代入即可求解;②根据题意确定点在两点(-1,1),(1,1)确定的线段上运动,列不等式即可求解.(1)解:x轴和y轴的距离的较大值定义为点M的“相对轴距”,点 2;(2)解:的“相对轴距”是2,与点的“相对轴距”相等的点的横纵坐标的最大值为2,依题意得到的图形是正方形,如图,(3)解:①如图,当点在三角形边界上时,有最大的“相对轴距”和最小的“相对轴距”,取小值,取最大值时,有最小值,这时点M与点A重合,点N与点B重合, 的最小值为1,的最大值为3时,的最小值为取最大值,取最小值时,有最大值,这时这时点M与点B重合,点N与点A重合,的最大值为3,的最小值为1时,的最大值3,              与点内部(含边界)的任意两点,并且点与点的“相对轴距”之比的取值范围和点M与点N的“相对轴距”之比的取值范围相同,如图,依题意,点的坐标为在两点(1,1),(-1,1)确定的线段上,【点睛】本题考查了坐标平面内点的坐标特征,点到坐标轴的距离,点的平移,解一元一次不等式,正确理解题意是解决问题的关键. 

    相关试卷

    初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题:

    这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共22页。试卷主要包含了在平面直角坐标系xOy中,点A,如果点P等内容,欢迎下载使用。

    初中数学第十九章 平面直角坐标系综合与测试达标测试:

    这是一份初中数学第十九章 平面直角坐标系综合与测试达标测试,共24页。试卷主要包含了在平面直角坐标系中,已知点P,点在第四象限,则点在第几象限,在平面直角坐标系中,点P等内容,欢迎下载使用。

    冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练:

    这是一份冀教版八年级下册第十九章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了在平面直角坐标系中,点A等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map