初中数学第十九章 平面直角坐标系综合与测试达标测试
展开
这是一份初中数学第十九章 平面直角坐标系综合与测试达标测试,共24页。试卷主要包含了在平面直角坐标系中,已知点P,点在第四象限,则点在第几象限,在平面直角坐标系中,点P等内容,欢迎下载使用。
八年级数学下册第十九章平面直角坐标系专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )A. B. C. D.2、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.3、在平面直角坐标系中,点P(2,)关于x轴的对称点的坐标是( )A.(2,) B.(,) C.(2,3) D.(3,)4、已知点在x轴上,点在y轴上,则点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、在平面直角坐标系中,已知点P(2a﹣4,a+3)在x轴上,则点(﹣a+2,3a﹣1)所在的象限为( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限7、在平面直角坐标系中,已知a<0, b>0, 则点P(a,b)一定在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)9、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),则2a+4b+3的值为______.2、已知点(a+1,2a+5)在y 轴上,则该点坐标为________.3、点关于y轴的对称点的坐标是______.4、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.5、在平面直角坐标系中,把点向右平移2个单位到点B,则点B位于第______象限.三、解答题(5小题,每小题10分,共计50分)1、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).2、如图,在平面直角坐标系中,,,将线段先向左平移5个单位长度,再向下平移4个单位长度得到线段(其中点与点,点与点是对应点),连接,.(1)补全图形,直接写出点和点的坐标;(2)求四边形的面积.3、在平面直角坐标系中,已知点,,连接AB,将AB向下平移5个单位得线段CD,其中点A的对应点为点C.(1)填空:点C的坐标为______,线段AB平移到CD扫过的面积为______;(2)若点P是y轴上的动点,连接PD.①如图(1),当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由;②当PD将四边形ACDB的面积分成2:3两部分时,求点P的坐标.4、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)△ABC是 三角形,理论依据 .5、如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是______;(2)点B关于原点对称的点C的坐标是_____;点A关于y轴对称的点D的坐标是______;(3)四边形ABDC的面积是______;(4)在y轴上找一点F,使,那么点F的所有可能位置是______. -参考答案-一、单选题1、C【解析】【分析】过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点A作AC⊥x轴于点C, 设 ,则 ,∵ ,,∴,∵, ,∴ ,解得: ,∴ ,∴ ,∴点 ,∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.2、D【解析】【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.3、C【解析】【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,据此求解即可得.【详解】解:点关于x轴的对称点的坐标为:.故选:C.【点睛】此题主要考查了关于x轴对称点的特点,熟练掌握坐标变换是解题关键.4、B【解析】【分析】根据题意,结合坐标轴上点的坐标的特点,可得m、n的值,进而可以判断点所在的象限.【详解】解:∵点在x轴上,∴,解得:,∵点在y轴上,∴解得:,∴点的坐标为,即在第二象限.故选:B.【点睛】本题主要考查坐标轴上点的特点,并能根据点的坐标,判断其所在的象限,理解坐标轴上点的特点是解题关键.5、D【解析】【分析】由x轴上点的坐标特点求出a值,代入计算出点的横纵坐标,即可判断.【详解】解:∵点P(2a﹣4,a+3)在x轴上,∴a+3=0,解得a=-3,∴﹣a+2=5,3a﹣1=-10,∴点(﹣a+2,3a﹣1)所在的象限为第三象限,故选:D.【点睛】此题考查了直角坐标系中点的坐标特点,根据点的坐标判断点所在的象限,由点在x轴上求出a的值是解题的关键.6、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0, b>0∴P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.8、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.9、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.10、A【解析】【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、15【解析】【分析】直接利用平移中点的变化规律求得a+2b=6,再整体代入求解即可.【详解】解:∵把点P(a−1,5)向左平移3个单位得到点Q(2−2b,5),∴a-1-3=2-2b,即a+2b=6,∴2a+4b+3=2(a+2b)+3=15,故答案为:15.【点睛】本题考查了坐标系中点、线段的平移规律以及代数式的求值.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2、(0,3)【解析】【分析】由点在y轴上求出a的值,代入求出2a+5即可得到点坐标.【详解】解:由题意得a+1=0,得a=-1,∴2a+5=3,∴该点坐标为(0,3),故答案为:(0,3).【点睛】此题考查了y轴上点坐标的特点,熟记坐标轴上点的坐标特点进行计算是解题的关键.3、(3,4)【解析】【分析】根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点关于y轴的对称点的坐标是故答案为:【点睛】本题考查了平面直角坐标系中关于y轴对称的点的坐标特征,掌握此特征是关键.4、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.5、四【解析】【分析】根据平移规律求得点B的坐标,即可求解.【详解】解:把点向右平移2个单位到点B,则即,从而得到点B,在第四象限,故答案为:四【点睛】此题考查了平面直角坐标系点的平移变换以及各象限的点的坐标规律,解题的关键是掌握平移规律求得点B的坐标.三、解答题1、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【解析】【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.2、 (1)补全图形见解析,点坐标为,点坐标(2)四边形的面积为32【解析】【分析】(1)根据平移的性质得到点C、D,连线即可得到图形,根据点位置得到坐标;(2)根据面积公式直接计算可得.(1)解:如图所示,点坐标为,点坐标,(2)解:四边形的面积.【点睛】此题考查了平移的规律,利用平移作图,计算网格中图形的面积,正确掌握平移的性质是解题的关键.3、 (1) (2)①S△PEC=S△ECD,理由见解析;②点P坐标为(0,5)或(0,).【解析】【分析】(1)先根据线段向下平移5个单位可得A的纵坐标减去5,横坐标不变,可得的坐标,再求解的长度,乘以平移距离即可得到平移后线段AB扫过的面积;(2)①先求出PF=2,再用三角形的面积公式得出S△PEC=CE,S△ECD=2CE,即可得出结论;②分DP交线段AC和交AB两种情况,利用面积之差求出△PCE和△PBE,最后用三角形面积公式即可得出结论.(1)解:将AB向下平移5个单位得线段CD, 线段AB平移到CD扫过的面积为: 故答案为:(2)①如图1,过P点作PF⊥AC于F,由平移知,轴,∵A(2,4),∴PF=2,由平移知,CD=AB=4,∴S△PEC=CE•PF=CE×2=CE,S△ECD=CE•CD=CE×4=2CE,∴S△ECD=2S△PEC,即:S△PEC=S△ECD;②(ⅰ)如图2,当PD交线段AC于E,且PD将四边形ACDB分成面积为2:3两部分时,连接PC,延长DC交y轴于点M,则M(0,﹣1),∴OM=1,连接AC,则S△ACD=S长方形ABDC=10,∵PD将四边形ACDB的面积分成2:3两部分,∴S△CDE=S矩形ABDC=×20=8,由①知,S△PEC=S△ECD=×8=4,∴S△PCD=S△PEC+S△ECD=4+8=12,∵S△PCD=CD•PM=×4PM=12,∴PM=6,∴PO=PM﹣OM=6﹣1=5,∴P(0,5).(ⅱ)如图3,当PD交AB于点F,PD将四边形ACDB分成面积为2:3两部分时,连接PB,延长BA交y轴于点G,则G(0,4),∴OG=4,连接AC,则S△ABD=S长方形ABDC=10,∵PD将四边形ACDB的面积分成2:3两部分,∴S△BDE=S矩形ABDC=×20=8,∵S△BDE=BD•BE=×5BE=8,∴BE=过P点作PH⊥BD交DB的延长线于点H,∵B(6,4),∴PH=6S△PDB=BD×PH=×5×6=15,∴S△PBE=S△PDB﹣S△BDE=15﹣8=7,∵S△PBE=BE•PG=PG=7,∴PG=,∴PO=PG+OG=+4=,∴P(0,),即:点P坐标为(0,5)或(0,).【点睛】此题是几何变换综合题,主要考查了平移的坐标变换,长方形的性质,坐标与图形,三角形的面积公式,清晰的分类讨论的思想是解本题的关键.4、(1)见解析;(2)图见解析,C'的坐标为(﹣5,5);(3)直角;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【解析】【分析】(1)根据点A及点C的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据关于y轴对称的点的坐标,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;【详解】解:(1)如图所示: (2)如图所示:△A'B'C'即为所求: C'的坐标为(﹣5,5); (3)直角三角形,∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.依据:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【点睛】本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.5、 (1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析】(1)根据坐标的定义,判定即可;(2)根据原点对称,y轴对称的点的坐标特点计算即可;(3)把四边形的面积分割成三角形的面积计算;(4)根据面积相等,确定OF的长,从而确定坐标.(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)=2××4×4=16,故答案为:16;(4)∵==8=,∴AD•OF=8,∴OF=4,又∵点F在y轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点睛】本题考查了坐标系中对称点的坐标确定,图形的面积计算,正确理解坐标的意义,适当分割图形是解题的关键.
相关试卷
这是一份数学八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共26页。试卷主要包含了在平面直角坐标系中,将点A,在平面直角坐标系中,点,点关于轴对称的点是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试同步训练题,共23页。试卷主要包含了如果点P,在平面直角坐标系中,点,点A关于y轴的对称点A1坐标是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第十九章 平面直角坐标系综合与测试随堂练习题,共22页。试卷主要包含了在平面直角坐标系xOy中,点A,如果点P等内容,欢迎下载使用。