中考数学一轮复习20分钟测试专题12《二次函数应用》(教师版)
展开专题12 二次函数应用
1.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )
A.﹣20m B.10m C.20m D.﹣10m
【答案】C.
【解析】
考点:点的坐标的求法及二次函数的实际应用.
2.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是( )
A.20 B.1508 C.1550 D.1558
【答案】D.
【解析】
试题分析:∵一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,且15≤x≤22,∴当x=20时,y最大值=1558.故选D.
考点:二次函数的最值.
3.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )
A.米 B.米 C.米 D.米
【答案】B.
【解析】
考点:二次函数的应用.
4.平时我们在跳绳时,绳子甩到最高处的形状可近似看做抛物线,如图建立直角坐标系,抛物线的函数表达式为,绳子甩到最高处时刚好通过站在点(2,0)处的小明的头顶,则小明的身高为( )
A.1.5m B.1.625m C.1.66m D.1.67m
【答案】A
【解析】
试题分析:当x=2时,y=-×4+=1.5m.
考点:二次函数的性质.
5.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门。已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室总占地面积最大为 m2
【答案】75
【解析】
考点:二次函数的应用.
6.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件.当每件的定价为________元时,该服装店平均每天的销售利润最大.
【答案】22.
【解析】
试题分析:设定价为x元时,利润为w元,由题意建立w与x的二次函数关系:w=(x-15)(×4+8),化简得:w=,∵-2<0,∴当x===22时,w有最大值,∴当每件的定价为22元时,该服装店平均每天的销售利润最大.
考点:利用二次函数解决实际问题.
7.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点、处要安装两盏警示灯,则这两盏灯的水平距离是____米.
【答案】18.
【解析】
考点:二次函数的应用.
8.如图,抛物线y=x2-x+3与x轴交于A,B两点,与y轴交于点C,点M的坐标为(2,1).以M为圆心,2为半径作⊙M.则下列说法正确的
是 (填序号).
①tan∠OAC=;
②直线AC是⊙M的切线;
③⊙M过抛物线的顶点;
④点C到⊙M的最远距离为6;
⑤连接MC,MA,则△AOC与△AMC关于直线AC对称.
【答案】①②③④.
【解析】
试题分析:过点M作MN⊥AB于点N,交⊙M于点D,则AN=BN,
∵抛物线y=x2-x+3与x轴交于A,B两点,与y轴交于点C,∴A,B两点的坐标是(,0),(3,0),点C的坐标为(0,3),∴OA=,OC=3,AN=,∴tan∠OAC==,∴①正确,∠CAO=60°,
∵点M的坐标为(2,1),∴MN=1,∵tan∠MAN=,∴∠MAN=30°,∴MA⊥AC,∴直线AC是⊙M的切线,∴②正确,
考点:二次函数综合题.
9.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.
(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= ,y乙= ;
(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?
【答案】(1)y甲=10x+40,y乙=10x+20;(2)2.
【解析】
试题解析:(1)由题意得,y甲=10x+40;y乙=10x+20;
(2)由题意得,10x+40≥(10x+20),解得x≤2,
由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)==,
∵a=﹣20<0,∴当x<6时,y随x增大而增大,∴当x=2时,W的值最大.
答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.
考点:1.二次函数的应用;2.最值问题;3.二次函数的最值.
10.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
【答案】(1)z=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)648万元.
【解析】
试题分析:本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值,第(3)小题关键是确定x的取值范围.(1)根据每月的利润z=(x﹣18)y,再把y=﹣2x+100代入即可求出z与x之间的函数解析式,
(2)把z=350代入z=﹣2x2+136x﹣1800,解这个方程即可,把函数关系式变形为顶点式运用二次函数的性质求出最值;
(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,
当25≤x≤43时z≥350,
又由限价32元,得25≤x≤32,
根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,
∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),
因此,所求每月最低制造成本为648万元.
考点:二次函数的应用.
中考数学一轮复习考点提高练习专题12 二次函数(教师版): 这是一份中考数学一轮复习考点提高练习专题12 二次函数(教师版),共14页。试卷主要包含了二次函数的概念,根据图像判断a,b,c的符号,二次函数与一元二次方程的关系,函数平移规律,故答案为8,上述结论中正确的是 等内容,欢迎下载使用。
中考数学一轮复习考点巩固练习专题10 二次函数(教师版): 这是一份中考数学一轮复习考点巩固练习专题10 二次函数(教师版),共18页。试卷主要包含了在该二次函数,的图象的对称轴为直线等内容,欢迎下载使用。
中考数学二轮专题复习专题05 函数应用问题综合题(教师版): 这是一份中考数学二轮专题复习专题05 函数应用问题综合题(教师版),共62页。试卷主要包含了一次函数+二次函数应用问题,一次函数+反比例函数应用问题,二次函数+反比例函数应用问题等内容,欢迎下载使用。