开学活动
搜索
    上传资料 赚现金

    2021-2022学年度冀教版九年级数学下册第三十章二次函数课时练习试卷(无超纲)

    2021-2022学年度冀教版九年级数学下册第三十章二次函数课时练习试卷(无超纲)第1页
    2021-2022学年度冀教版九年级数学下册第三十章二次函数课时练习试卷(无超纲)第2页
    2021-2022学年度冀教版九年级数学下册第三十章二次函数课时练习试卷(无超纲)第3页
    还剩26页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀同步训练题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀同步训练题,共29页。试卷主要包含了二次函数y=a+bx+c等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列实际问题中的yx之间的函数表达式是二次函数的是(       A.正方体集装箱的体积,棱长xmB.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.高为14m的圆柱形储油罐的体积,底面圆半径xm2、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为(       A. B.C. D.3、已知二次函数,则关于该函数的下列说法正确的是(       A.该函数图象与轴的交点坐标是B.当时,的值随值的增大而减小C.当取1和3时,所得到的的值相同D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象4、关于x的一元二次方程ax2bxc=0(a≠0)的两个根分别为-1和5,则二次函数yax2bxca≠0)的对称轴是(       A.x=-3 B.x=-1 C.x=2 D.x=35、二次函数ya+bx+ca≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是(  )A.4 B.3 C.2 D.16、下列二次函数的图象中,顶点在第二象限的是(       A. B.C. D.7、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是(       A. B. C. D.8、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于AB两点,拱高为78米(即最高点OAB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为(       A. B. C. D.9、抛物线yx2+4x+5的顶点坐标是(  )A.25 B.21 C.(﹣25 D.(﹣2110、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,其中.得出结论:①;②;③;④.上述结论正确的有(       )个.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么mn的大小关系是:m_____n.(填“>”、“=”或“<”)2、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.3、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.4、若关于的函数轴只有一个交点,则实数的值为____.5、已知的三个顶点为, 将向右平移 个单位后, 某一边的中点恰好落在二次函数的图象上, 则的值为____________.三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图象经过点(1)求二次函数的表达式;(2)求二次函数的图象与轴的交点坐标.2、已知抛物线x轴有交点,求m的取值范围.3、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.(1)求的值,(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出时,的取值范围.4、如图,在平面直角坐标系中,抛物线x轴交于点,点,与y轴交于点C(1)求该抛物线的解析式;(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.5、二次函数是常数,)的自变量和函数值部分对应值如下表:-3-2-1018545根据以上列表,回答下列问题:(1)直接写出的值;(2)求此二次函数的解析式. -参考答案-一、单选题1、D【解析】【分析】根据题意,列出关系式,即可判断是否是二次函数.【详解】A.由题得:,不是二次函数,故此选项不符合题意;B.由题得:,不是二次函数,故此选项不符合题意;C.由题得:,不是二次函数,故此选项不符合题意;D.由题得:,是二次函数,故此选项符合题意.故选:D.【点睛】本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.2、C【解析】【分析】此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:∵抛物线的顶点坐标为∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为故选:C【点睛】此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.3、C【解析】【分析】,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当,代入,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数的图象与轴的交点坐标是∴A选项错误;∵二次函数的图象开口向上,对称轴是直线∴当时,的值随值的增大而增大,∴B选项错误;∵当时,所得到的的值都是11,∴C选项正确;∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,∴D选项错误.故选:C.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.4、C【解析】【分析】一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标,根据函数的对称性即可求解.【详解】解:一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为根据函数的对称性,函数的对称轴为直线故选:C.【点睛】本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为,则抛物线的对称轴为5、B【解析】【分析】看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定abc的符号;根据对称轴,确定ab之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.【详解】∵抛物线与x轴有两个不同的交点,﹣4ac>0;故①正确;∵抛物线开口向下,与y轴交于正半轴,>0,a<0,b>0, c>0,abc<0;故②正确;∴4a+b=0,故③正确;x= -2时,y=4a-2b+c根据函数的增减性,得4a-2b+c<0;故④错误.故选B.【点睛】本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.6、C【解析】【分析】根据二次函数的顶点式求得顶点坐标,即可判断.【详解】解:A.二次函数的顶点为(13),在第一象限,不合题意;B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;C.二次函数的顶点为(﹣13),在第二象限,符合题意;D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;故选:C【点睛】本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.7、B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),故当时,,即,故B错误,符合题意;C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2bc>0,故C正确,不符合题意;D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3bc=0,正确,不符合题意;故选:B.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.8、B【解析】【分析】直接利用图象设出抛物线解析式,进而得出答案.【详解】∵拱高为78米(即最高点OAB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a解得:a=∴此抛物线钢拱的函数表达式为故选:B.【点睛】本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.9、D【解析】【分析】利用顶点公式(﹣),进行解题.【详解】解:∵抛物线yx2+4x+5x=﹣=﹣=﹣2,y=1∴顶点为(﹣21故选:D【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣).10、C【解析】【分析】由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.【详解】解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴, 故①符合题意; 二次函敞的图象过点,结合图象可得:在抛物线上, 抛物线的对称轴为: 故②符合题意; 二次函敞的顶点坐标为:结合图象可得: 故③不符合题意;时, 又由图象可得:时, 解得: 故④符合题意;综上:符合题意的有:①②④故选C【点睛】本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.二、填空题1、【解析】【分析】先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.【详解】解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,所以当时,的增大而增大,故答案为:【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.2、(0,-1)【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将二次函数y=-x2+2图象向下平移3个单位,得到y=-x2+2-3=-x2-1,顶点坐标为(0,-1),故答案为:(0,-1).【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.3、(【解析】【分析】Axx2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.【详解】解:∵点A是抛物线图像上一点故设Axx2),∵将点A向下平移2个单位到点BBxx2-2)∵把A绕点B顺时针旋转120°得到点C,如图,过点BBDABB,过点CCDBDDAB=BC=2,∠ABC=120°,∠ABD=90°,∴∠DBC=30°CD=BD=Cx+x2-3),Cx+x2-3)代入x2-3=(x+2解得x=-A(-,3)故答案为:(,3).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.4、1【解析】【分析】对于二次函数解析式,令得到关于的一元二次方程,由抛物线与轴只有一个交点,得到根的判别式等于0,即可求出的值.【详解】解:对于二次函数,得到二次函数的图象与轴只有一个交点,解得:故答案为:1.【点睛】此题考查了抛物线与轴的交点,解题的关键是熟练掌握二次函数的性质.5、【解析】【分析】求得三角形三边中点的坐标,然后根据平移规律可得平移后的中点坐标,再根据平移后的中点在二次函数的图象上,进而算出m的值.【详解】解:∵△ABC的三个顶点为A(-1,-1),B(-1,3),C(-3,-3),AB边的中点(-1,1),BC边的中点(-2,0),AC边的中点(-2,-2),∵将△ABC向右平移m(m>0)个单位后,AB边的中点平移后的坐标为(-1+m,1),BC边的中点平移后的坐标为(-2+m,0),AC边的中点平移后的坐标为(-2+m,-2),∵二次函数的图象在x轴的下方,点(-1+m,1)在x轴的上方,AB边的中点不可能在二次函数的图象上,把(-2+m,0)代入,得-2(-2+m)2=0,解得m=2;把(-2+m,-2)代入,得-2(-2+m)2=-2,解得m1=1,m2=3;的值为1,2,3,故答案为1,2,3.【点睛】此题主要考查了平移的性质,中点坐标公式,二次函数图象上点的坐标特点,关键是掌握二次函数图象上的点(xy)的横纵坐标满足二次函数解析式.三、解答题1、 (1)yx 2+ x(2)0,﹣).【解析】【分析】1)利用待定系数法,把代入函数解析式即可求;2)令x0,求得y的值即可得出结论.(1)解:∵二次函数yax+122的图象经过点(﹣56),a(﹣5+1226解得:a∴二次函数的表达式为:yx+122,即yx 2+ x(2)解:令x0,则y×(0+122=﹣∴二次函数的图象与y轴的交点坐标为(0,﹣).【点睛】本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.2、【解析】【分析】根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.【详解】∵抛物线x轴有交点,∴方程有两个实数根.解得.【点睛】本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.3、 (1)(2)(3)4、 (1)(2)矩形PEDF周长的最大值为,此时点(3)【解析】【分析】(1)将点,点,代入解析式,待定系数法求解析式即可;(2)根据题意转化为求最长时点的坐标,进而求得周长即可;(3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.(1)解:将点,点,代入解析式,得解得抛物线的解析式为:(2)四边形是矩形,则则矩形PEDF周长为取得最大值时,矩形PEDF周长的最大设直线的解析式为,将点代入得,解得直线的解析式为,则时,取得最大值,最大值为此时矩形PEDF周长为时,(3)由(2)可知,则过点,则将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,则新抛物线解析式为:绕点Q顺时针方向旋转90°后得到轴,旋转90°后,则轴,的两个顶点恰好落在新抛物线上时,只有落在抛物线上,设直线①当在抛物线上时,如图,设点的横坐标分别为的两根即方程解得解得②当在抛物线上时,如图,设点的横坐标分别为中,直线的解析式为设直线的解析式为的两根解得直线的解析式为解得时,综上所述【点睛】本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.5、 (1)c=5,m=8(2)y=x²+2x+5【解析】【分析】(1)根据抛物线的对称性及表格中函数值x相等可求出对称轴进而求出m的值;根据自变量x=0可求出抛物线与y轴的交点,即可求得c的值;(2)根据对称轴为x=-1,得到抛物线顶点为(-1,4),设顶点式为y=a(x+1)2+4,代入其中一个点求出a的值即可求出二次函数解析式.(1)解:根据图表可知:二次函数的图象过点(0,5),(-2,5),∴二次函数的对称轴为:直线∵直线x=-3到对称轴x=-1的距离为2,直线x=1到对称轴x=-1的距离也为3,∴(-3,8)的对称点为(1,8),m=8,x=0时,由表格中数据可知:c=5.(2)解:∵对称轴是直线x=-1,∴由表格中数据可知:顶点为(-1,4),y=a(x+1)2+4,将(0,5)代入y=a(x+1)2+4得,a+4=5,解得a=1,∴这个二次函数的解析式为y=(x+1)2+4=x²+2x+5.【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求出函数对称轴是解本题的关键. 

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀复习练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀复习练习题,共33页。试卷主要包含了二次函数y=a+bx+c,一次函数与二次函数的图象交点,若二次函数y=ax2+bx+c,抛物线的顶点为等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共33页。试卷主要包含了已知点,,都在函数的图象上,则,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试精品课后测评:

    这是一份数学九年级下册第30章 二次函数综合与测试精品课后测评,共27页。试卷主要包含了抛物线,,的图象开口最大的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map