![2021-2022学年度冀教版九年级数学下册第三十章二次函数专项练习试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12734465/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版九年级数学下册第三十章二次函数专项练习试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12734465/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版九年级数学下册第三十章二次函数专项练习试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12734465/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第30章 二次函数综合与测试精品当堂达标检测题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品当堂达标检测题,共33页。
九年级数学下册第三十章二次函数专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
A. B. C. D.
2、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A. B.
C. D.
3、已知二次函数,当时,随的增大而减小,则的取值范围是( )
A. B. C. D.
4、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为( )
A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+1
5、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
A.秒 B.秒 C.秒 D.1秒
6、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
7、若二次函数与轴的一个交点为,则代数式的值为( )
A. B. C. D.
8、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为( )
A.2 B.3 C.3 D.D3
9、二次函数的图象如图所示,则下列结论正确的是( )
A.,, B.,, C.,, D.,,
10、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是( )
A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).
2、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.
3、如果抛物线的顶点在轴上,那么的值是_________.
4、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.
5、二次函数的图像不经过第______象限.
三、解答题(5小题,每小题10分,共计50分)
1、已知抛物线经过,且顶点在y轴上.
(1)求抛物线解析式;
(2)直线与抛物线交于A,B两点.
①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
2、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.
(1)求这条抛物线的解析式.
(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?
3、如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,点为的中点.
(1)求该抛物线的函数表达式;
(2)若点是第四象限内该抛物线上一动点,求面积的最大值;
(3)是抛物线的对称轴上一点,是抛物线上一点,直接写出所有使得以点,,,为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出来.
4、已知二次函数.
(1)把它配方成的形式,并写出它的开口方向、顶点的坐标;
(2)作出函数的图象(列表描出五个关键点).
…
0
1
2
3
4
…
…
…
5、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
(1)求证:b=0;
(2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
②求的值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
【详解】
解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
平移后的抛物线经过三点、、,
故选C
【点睛】
本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
2、D
【解析】
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
3、D
【解析】
【分析】
先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
【详解】
解:∵,
∴对称轴为直线x=b,开口向下,
在对称轴右侧,y随x的增大而减小,
∵当x>1时,y随x的增大而减小,
∴1不在对称轴左侧,
∴b≤1,
故选:D.
【点睛】
本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
4、D
【解析】
【分析】
由题意知平移后的函数关系式为,进行整理即可.
【详解】
解:由题意知平移后的函数关系式为:,
故选D.
【点睛】
本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.
5、A
【解析】
【分析】
根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
【详解】
解:由题意得,
当h=3时,,
解得,
∴球不低于3米的持续时间是1-0.6=0.4(秒),
故选:A.
【点睛】
此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
6、D
【解析】
【分析】
根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
【详解】
解:∵抛物线的对称轴为x=-1,
所以B(1,0)关于直线x=-1的对称点为A(-3,0),
∴AB=1-(-3)=4,故①正确;
由图象可知:抛物线与x轴有两个交点,
∴Δ=b2-4ac>0,故②正确;
由图象可知:抛物线开口向上,
∴a>0,
由对称轴可知:−0,故③正确;
当x=-1时,y=a-b+c
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品习题,共33页。试卷主要包含了一次函数与二次函数的图象交点,抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
这是一份初中数学第30章 二次函数综合与测试精品当堂达标检测题,共34页。
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀课后测评,共27页。试卷主要包含了二次函数y=ax2﹣4ax+c,已知点,,都在函数的图象上,则等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)