![2021-2022学年度鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试练习题(精选含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734254/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试练习题(精选含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734254/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试练习题(精选含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734254/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学六年级下册第五章 基本平面图形综合与测试课后测评
展开
这是一份数学六年级下册第五章 基本平面图形综合与测试课后测评,共25页。试卷主要包含了如图,D,下列四个说法等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点在直线上,平分,,,则( )A.10° B.20° C.30° D.40°2、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )A.两点确定一条直线 B.两点之间线段最短C.线段有两个端点 D.射线只有一个端点3、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )A. B. C. D.4、如果线段,,那么下面说法中正确的是( )A.点在线段上 B.点在直线上C.点在直线外 D.点可能在直线上,也可能在直线外5、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°6、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间,线段最短 B.两点确定一条直线C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离7、如图所示,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示8、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )A.若,则 B.若,则C.若,则 D.若,则9、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )A.1个 B.2个 C.3个 D.4个10、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )A.105° B.125° C.135° D.145°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点、在直线上,点是直线外一点,可知,其依据是 _____.2、下列说法正确的有 _____.(请将正确说法的序号填在横线上)(1)锐角的补角一定是钝角;(2)一个角的补角一定大于这个角;(3)若两个角是同一个角的补角,则它们相等;(4)锐角和钝角互补.3、若一个角度数是115°6′,则这个角的补角是___________.4、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,则平面内不同的n个点最多可确定_____条直线(用含有n的代数式表示).5、如图,已知点C为上一点,,D,E分别为,的中点,则的长为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC,∠BOC的度数;(2)作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,求∠MON的度数;(3)过点O作射线OD,若2∠AOD=3∠BOD,求∠COD的度数.2、如图,O为直线AB上一点,与互补,OM,ON分别是,的平分线.(1)根据题意,补全下列说理过程:∵与互补,∴.又___________=180°,∴∠_________=∠_________.(2)若,求的度数.(3)若,则(用表示).3、如图,将一副直角三角板的直角顶点C叠放在一起.(1)若,则______;若,则______;(2)猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)若,求∠DCE的度数.4、如图,O为直线AB上一点,,OD平分∠AOC,.(1)图中小于平角的角有______个.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.5、如图1,在数轴上点A表示数a,点B表示数b,O为原点,AB表示点A和点B之间的距离,且a,b满足.(1)若T为线段AB上靠近点B的三等分点,求线段OT的长度;(2)如图2,若Q为线段AB上一点,C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),运动的时间为ts.若C、D运动到任意时刻时,总有,请求出AQ的长;(3)如图3,E、F为线段OB上的两点,且满足,,动点M从A点、动点N从F点同时出发,分别以3个单位/s,1个单位/s的速度沿直线AB向右运动,是否存在某个时刻使得成立?若存在,求此时MN的长度;若不存在,说明理由. -参考答案-一、单选题1、A【解析】【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=∠AOC==,∵∠EOD=50°,∴,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.2、A【解析】【分析】根据经过两点有一条直线,并且只有一条直线即可得出结论.【详解】解:∵让男生站成一条直线,他先让前两个男生站好不动,∴经过两点有一条直线,并且只有一条直线,∴这种做法的数学依据是两点确定一条直线.故选A.【点睛】本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.3、C【解析】【分析】根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.【详解】解:,点A到原点的距离最大,点其次,点最小,又,原点的位置是在点、之间且靠近点的地方,,故选:.【点睛】此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.4、D【解析】【分析】根据,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.【详解】解:∵,MA+MB=13cm,∴点可能在直线上,也可能在直线外,故选:D.【点睛】此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.5、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.6、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.7、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.8、D【解析】【分析】先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.【详解】解: C为AD的中点, ,则 故A不符合题意; ,则 同理: 故B不符合题意; ,则 同理: 故C不符合题意; ,则 同理: 故D符合题意;故选D【点睛】本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键9、A【解析】【分析】根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.【详解】解:①射线AB和射线BA表示不是同一条射线,故此说法错误;②两点之间,线段最短,故此说法正确;③38°15'≠38.15°,故此说法错误;④直线不能度量,所以“画直线AB=3cm”说法是错误的;⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;综上所述,正确的是②,故选:A.【点睛】本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.10、B【解析】【分析】由题意知计算求解即可.【详解】解:由题意知故答案为:B.【点睛】本题考查了方位角的计算.解题的关键在于正确的计算.二、填空题1、两点之间,线段最短【解析】【分析】根据题意可知两点之间,线段和折线比较,线段最短【详解】解:点、在直线上,点是直线外一点,可知,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.2、(1)(3)##(3)(1)【解析】【分析】根据余角与补角的定义,即可作出判断.【详解】解:(1)锐角的补角一定是钝角,故(1)正确;(2)一个角的补角不一定大于这个角;∵90°角的补角的度数是90°,∴说一个角的补角一定大于这个角错误,故(2)错误;(3)若两个角是同一个角的补角,则它们相等;故(3)正确;(4)锐角和钝角不一定互补,∵如∠A=10°,∠B=100°,当两角不互补,∴说锐角和钝角互补错误,故(3)错误;故答案为:(1)(3).【点睛】本题考查了补角和余角的定义,以及补角的性质:同角的补角相等,理解定义是关键.3、64°54'【解析】【分析】根据补角的定义(若两个角之和为,则这两个角互为补角)进行求解即可得.【详解】解:,故答案为:.【点睛】题目主要考查补角的定义,理解补角的定义是解题关键.4、【解析】【分析】平根据面内不同的两点确定一条直线,不同的三点最多确定三条直线…依此类推找出规律.【详解】解:平面内不同的2个点确定1条直线, 3个点最多确定3条,即3=1+2;4个点确定最多1+2+3=6条直线; 则n个点最多确定1+2+3+……(n-1)=条直线,故答案为.【点睛】此题主要考查了两点确定一条直线,解决问题的关键是通过观察、分析、归纳、验证,然后得出一般性的结论,再代入求值.5、3【解析】【分析】根据AC=12cm,CB=AC,得到CB=6cm,求得AB=18cm,根据D、E分别为 AC、AB的中点,分别求得AE,AD的长,利用线段的差,即可解答.【详解】解:∵AC=12cm,CB=AC,∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵D、E分别为AC、AB的中点,∴AE=AB=9cm,AD=AC=6cm,∴DE=AE﹣AD=3cm.故答案为3.【点睛】本题考查了线段的中点和线段的和差,熟知各线段之间的和、差及倍数关系是解答此题的关键.三、解答题1、 (1)∠AOC=40°,∠BOC=80°(2)40°(3)∠COD的度数为32°或176°【解析】【分析】(1)根据∠AOC:∠BOC=1:2,即可求解;(2)先求出∠COM,再求出∠CON,相加即可求解;(3)分OD在∠AOB内部和外部两种情况分类讨论即可求解.【小题1】解:∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;【小题2】∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;【小题3】如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴x+=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC-∠BOD=80°-48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=,∵∠AOB=120°,∴+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解决问题的关键.2、 (1)BOC; AOD;BOC;(2)22°.(3).【解析】【分析】(1)根据与互补,得出.根据 BOC =180°,利用同角的补角性质得出∠AOD=∠BOC.(2)根据OM是∠AOC的平分线.得出∠AOC=2∠MOC=2×68°=136°,根据∠AOC与∠AOD互补,求出∠AOD=180°﹣136°=44°,再根据ON是∠AOD的平分线.可得∠AON=∠AOD=22°.(3)根据OM是∠AOC的平分线.得出∠AOC=2,根据∠AOC与∠AOD互补,可求∠AOD=180°﹣,根据ON是∠AOD的平分线.得出∠AON=∠AOD=.(1)解:∵与互补,∴.又 BOC =180°,∴∠AOD=∠BOC.故答案为:BOC; AOD;BOC;(2)解:∵OM是∠AOC的平分线.∴∠AOC=2∠MOC=2×68°=136°,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣136°=44°,∵ON是∠AOD的平分线.∴∠AON=∠AOD=22°.(3)解:∵OM是∠AOC的平分线.∴∠AOC=2,∵∠AOC与∠AOD互补,∴∠AOD=180°﹣,∵ON是∠AOD的平分线.∴∠AON=∠AOD=.【点睛】本题考查补角性质,同角的补角性质,角平分线定义,角的和差倍分计算,掌握补角性质,同角的补角性质,角平分线定义,角的和差倍分计算是解题关键.3、 (1)145°,30°(2)(3)【解析】【分析】(1)根据求解即可;(2)(3)方法同(1)(1)解:∵,∴故答案为:;(2),理由如下,,(3),,【点睛】本题考查了三角尺中角度的计算,找到关系式是解题的关键.4、 (1)9(2)(3)见解析【解析】【分析】(1)分别以为始边计数数角,从而可得答案;(2)先求解 再求解 从而可得答案;(3)分别求解从而可得结论.(1)解:图中小于平角的角∠AOD、∠AOC、∠AOE、∠DOC、∠DOE、∠DOB、∠COE、∠COB、∠EOB.所以图中小于平角的角共有9个.(2)解:因为,OD平分∠AOC,所以,又所以(3)解:因为,,所以又因为所以,所以OE平分∠BOC.【点睛】本题考查的是角的含义,角的和差运算,角平分线的定义,掌握“角平分线的定义”是解本题的关键.5、 (1)5(2)5(3)存在,9或0【解析】【分析】(1)根据绝对值的非负性及偶次方的非负性求出a=-5,b=10,得到AB=10-(-5)=15,由T为线段AB上靠近点B的三等分点,得到BT=5,根据OT=OB-BT求出结果;(2)由运动速度得到BD=2QC,由C、D运动到任意时刻时,总有,得到BQ=2AQ,即可求出AQ;(3)先求出BF=4,EF=2,AE=9.当时,得到9-3m+4-m=9,当时,得到3m-9+4-m=9;当m>4时,得到3m-9+m-4=9,解方程即可.(1)解:∵,∴a+5=0,b+2a=0,∴a=-5,b=10,∴点A表示数-5,点B表示数10,∴AB=10-(-5)=15,∵T为线段AB上靠近点B的三等分点,∴BT=5,∴OT=OB-BT=5;(2)解:∵C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),∴BD=2QC,∵C、D运动到任意时刻时,总有,∴BQ=2AQ,∵BQ+AQ=15,∴AQ=5;(3)解:∵,,∴BF=4,EF=2,AE=9,设点M运动ms,当时,如图,∵EM=9-3m,BN=4-m,,∴9-3m+4-m=9,解得m=1,∴MN=9-3m+2+m=9;当时,如图,∵EM=3m-9,BN=4-m,,∴3m-9+4-m=9,解得m=7(舍去);当m>4时,如图,∵EM=3m-9,BN=m-4,,∴3m-9+m-4=9,解得m=;∴MN=15-3m+m-4=0;综上,存在,此时MN的长度为9或0.【点睛】此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.
相关试卷
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂达标检测题,共21页。试卷主要包含了如图所示,点E,如图,一副三角板等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共18页。试卷主要包含了已知,则∠A的补角等于,下列各角中,为锐角的是,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共17页。试卷主要包含了上午10,下列各角中,为锐角的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)