![2021-2022学年度鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试试题(含解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734248/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试试题(含解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734248/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度鲁教版(五四制)六年级数学下册第五章基本平面图形章节测试试题(含解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734248/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学第五章 基本平面图形综合与测试测试题
展开
这是一份数学第五章 基本平面图形综合与测试测试题,共28页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面上有三个点A,B,C,如果,,,则( )A.点C在线段AB的延长线上 B.点C在线段AB上C.点C在直线AB外 D.不能确定2、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )A. B. C. D.3、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )A.4cm B.36cm C.4cm或36cm D.4cm或2cm4、①线段,AB的中点为D,则;②射线;③OB是的平分线,,则;④把一个周角6等分,每份是60°.以上结论正确的有( )A.②③ B.①④ C.①③④ D.①②③5、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )A.a B.b C.c D.d6、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )A.①②③ B.①②④ C.①③④ D.②③④7、如图,O是直线AB上一点,则图中互为补角的角共有( )A.1对 B.2对 C.3对 D.4对8、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )A. B. C. D.9、下列说法中正确的是( )A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°10、如图所示,若,则射线OB表示的方向为( ).A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列结论:①多项式的次数为3;②若,则OP平分∠AOB;③满足的整数x的值有5个;④若,则关于x的一元一次方程的解为.其中正确的结论是___(填序号).2、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.3、阳阳在月月的西南方向200m处,则月月在阳阳的_____方向_____m处.4、下列说法正确的有 _____.(请将正确说法的序号填在横线上)(1)锐角的补角一定是钝角;(2)一个角的补角一定大于这个角;(3)若两个角是同一个角的补角,则它们相等;(4)锐角和钝角互补.5、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若,,则_____.三、解答题(5小题,每小题10分,共计50分)1、数轴上不重合两点A,B.(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;②当点O是线段AB的中点时,直接写出t的取值范围.2、如图①.直线上有一点, 过点在直线上方作射线, 将一直角三角板(其中)的直角顶点放在点处, 一条直角边在射线 上, 另一边OA在直线DE的上方,将直角三角形绕着点O按每秒的速度顺时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到图②的伩置时, 射线恰好平分, 此时, 与 之间的数量关系为____________.(2)若射线的位置保持不变, 且,①在旋转过程中,是否存在某个时刻,使得射线, 射线, 射线中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出的值; 若不存在, 请说明理由;②在旋转过程中, 当边与射线相交时, 如图③, 请直接写出的值____________.3、已知线段(如图),C是AB反向延长线上的点,且,D为线段BC的中点.(1)将CD的长用含a的代数式表示为________;(2)若,求a的值.4、【概念与发现】当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.例如,点C是AB的中点时,即,则;反之,当时,则有.因此,我们可以这样理解:“”与“”具有相同的含义.【理解与应用】(1)如图,点C在线段AB上.若,,则________;若,则________AB.【拓展与延伸】(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;②t为何值时,.5、如图甲,已知线段,,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若,则______;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由;(3)①对于角,也有和线段类似的规律.如图乙,已知在内部转动,OE,OF分别平分和,若,,求;②请你猜想,和会有怎样的数量关系,直接写出你的结论. -参考答案-一、单选题1、B【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】解:如图:∵AB=8,AC=5,BC=3,从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:B.【点睛】本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.2、C【解析】【分析】把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的.【详解】解:把大正方形进行切割,如下图,由图可知,正方形可分割成16个面积相等的等腰直角三角形,号正方形,由两个等腰直角三角形组成,占整个正方形面积的.故选 C.【点睛】本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.3、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵,∴AB=BD,∵点C为线段AB的中点,∴BC=,∵,∴,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵,∴AD=,∵点C为线段AB的中点,∴AC=BC=,∵,∴-=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.4、B【解析】【分析】分别根据中点的定义,射线的性质,角平分线的定义,周角的定义逐项判断即可求解.【详解】解:①线段,AB的中点为D,则,故原判断正确;②射线没有长度,故原判断错误;③OB是的平分线,,则,故原判断错误;④把一个周角6等分,每份是60°,故原判断正确.故选:B【点睛】本题考查了中点的定义,射线的理解,角平分线的性质,周角的定义等知识,熟知相关知识是解题关键.5、B【解析】【分析】利用直尺画出遮挡的部分即可得出结论.【详解】解:利用直尺画出图形如下:可以看出线段b与n在一条直线上.故选:B.【点睛】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.6、B【解析】【分析】先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.【详解】解:根据题意,画出图形,如图所示:设 ,则 ,∵点D是线段AC的中点,∴ ,∴ ,∴AB=BD,即点B是线段AD的中点,故①正确;∴BD=CD,故②正确;∴AB=CD,故③错误;∴ ,∴BC﹣AD=AB,故④正确;∴正确的有①②④.故选:B【点睛】本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.7、B【解析】【分析】根据补角定义解答.【详解】解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,故选:B.【点睛】此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.8、B【解析】【分析】先求出,再根据中点求出,即可求出的长.【详解】解:∵,∴,,∵点是线段的中点,∴,,故选:B.【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.9、D【解析】【分析】分别根据线段的性质、射线、余角、补角等定义一一判断即可.【详解】解:A.两点之间所有的连线中,线段最短,故此选项错误;B.射线AB和射线BA不是同一条射线,故此选项错误;C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;故选:D【点睛】本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.10、A【解析】【分析】根据同角的余角相等即可得,,根据方位角的表示方法即可求解.【详解】如图,即射线OB表示的方向为北偏东35°故选A【点睛】本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.二、填空题1、①③④【解析】【分析】根据多项式的次数的含义可判断A,根据角平分线的定义可判断B,根据绝对值的含义与数轴上两点之间的距离可判断C,由一元一次方程的定义与一元一次方程的解法可判断D,从而可得答案.【详解】解:多项式的次数为3,故①符合题意;如图,,但OP不平分∠AOB;故②不符合题意,如图,当时,满足的整数x的值有,有5个;故③符合题意; , 为关于x的一元一次方程,则 ,故④符合题意;综上:符合题意的有①③④故答案为:①③④【点睛】本题考查的是多项式的次数,角平分线的定义,绝对值的含义,数轴上两点之间的距离,一元一次方程的定义及解一元一次方程,掌握以上基础知识是解本题的关键.2、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.3、 东北 200【解析】【分析】根据方向角的定义解答即可.【详解】解:阳阳在月月的西南方向m处,则月月在阳阳的东北方向m处.故答案为:东北,200.【点睛】本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.4、(1)(3)##(3)(1)【解析】【分析】根据余角与补角的定义,即可作出判断.【详解】解:(1)锐角的补角一定是钝角,故(1)正确;(2)一个角的补角不一定大于这个角;∵90°角的补角的度数是90°,∴说一个角的补角一定大于这个角错误,故(2)错误;(3)若两个角是同一个角的补角,则它们相等;故(3)正确;(4)锐角和钝角不一定互补,∵如∠A=10°,∠B=100°,当两角不互补,∴说锐角和钝角互补错误,故(3)错误;故答案为:(1)(3).【点睛】本题考查了补角和余角的定义,以及补角的性质:同角的补角相等,理解定义是关键.5、【解析】【分析】首先求得和∠EAC,然后根据即可求解.【详解】解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置, ∠GAD=∠EAB=90°, ,,∴∴ 故答案为:【点睛】本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.三、解答题1、 (1)(2)5(3)①,;②且【解析】【分析】(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.(1)解:∵点A表示的数为﹣3,点B表示的数为1,∴AB=1-(-3)=1+3=4,∵点M为AB中点,∴AM=BM,∴点M表示的数为:-3+2=-1,故答案为:-1;(2)解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,∴AN=1-(-3)=1+3=4,∵点N为AB中点,∴AB=2AN=2×4=8,∴点B表示的数为:-3+8=5,故答案为:5;(3)①点A表示的数为, 点C表示的数为, 故答案为:;;②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,∴-3+3t+t=5-(-3),∴t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,∴t≠5,当点B与点D重合时,点A运动到1,-5+t=1,∴t=6,∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.【点睛】本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.2、 (1)(2)①;②【解析】【分析】(1)根据OB平分∠COE,得出∠COB=∠EOB,根据∠AOB=90°,得出∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,利用等角的余角性质得出∠AOC=∠AOD即可;(2)①存在,根据,得出∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,列方程15°t=30°,解得t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∠EOB=2∠EOC=120°>90°,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∠BOC=2∠EOC=120°>90°∠BOC不是锐角舍去即可;②如图根据∠COD=120°,可得AB与OD相交时,∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,代入计算即可.(1)解:∵OB平分∠COE,∴∠COB=∠EOB,∵∠AOB=90°,∴∠BOC+∠AOC =90°,∠BOE+∠AOD =90°,∴∠AOC=∠AOD,故答案为:∠AOC=∠AOD;(2)解:①存在,∵,∴∠COE=180°-∠COD=180°-120°=60°,当OB平分∠COE时,直角边在射线 上,∠EOB=∠BOC=,则15°t=30°,∴t=2;当OC平分∠EOB时,∠BOC=∠EOC=60°,∴∠EOB=2∠EOC=120°>90°,∴当OC平分∠EOB时,∠EOB不是锐角舍去,当OE平分∠BOC时,∠EOB=∠EOC=60°,∴∠BOC=2∠EOC=120°>90°,当OE平分∠BOC时,∠BOC不是锐角舍去,综上,所有满足题意的t的取值为2,②如图∵∠COD=120°,当AB与OD相交时,∵∠BOC=∠COD-∠BOD=120°-∠BOD,∠AOD=∠AOB-∠BOD=90°-∠BOD,∴,故答案为:30°.【点睛】本题考查角平分线定义,三角板中角度计算,图形旋转,角的和差计算,熟练掌握角平分线的性质,分类讨论的思想运用是解答的关键.3、 (1)a(2)9cm【解析】【分析】(1)首先求出CB的长;然后根据D为线段BC的中点,求出CD的长即可.(2)首先根据AD=3cm表示出CD;然后得到方程,求出a的值即可.(1)解:∵AB=a,AC=AB=a,∴CB=a+a=a,∵D为线段BC的中点,∴CD=CB=a;(2)∵AC=a,AD=3cm,∴CD=a+3,∴a+3=a,解得:a=9.【点睛】此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.4、 (1),(2)①3;②2或6【解析】【分析】(1)根据“点值”的定义即可得出答案;(2)①设运动时间为t,再根据的值是个定值即可得出m的值;②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可(1)解:∵,,∴∴,∵,∴(2)解:①设运动时间为t,则AP=t,AQ=10-3t,则,∵的值是个定值,∴的值是个定值,∴m=3②当点Q从点B向点A方向运动时,∵∴∴t=2当点Q从点A向点B方向运动时,∵∴∴t=6∴t的值为2或6【点睛】本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.5、 (1)12(2)不变;(3)①90°;②【解析】【分析】(1)根据线段中点推理表示EF的长度即可;(2)根据,再根据中点进行推导即可;(3)①根据再结合角平分线进行计算;②由①可以得到结论.(1)∵E,F分别是AC,BD的中点,∴EC=AC,DF=DB.∴EC+DF=AC+DB= (AC+DB).又∵AB=20cm,CD=4cm,∴AC+DB=AB-CD=20-4=16(cm).∴EC+DF= (AC+DB)=8(cm).∴EF=EC+DF+CD=8+4=12(cm).故答案为:12.(2)EF的长度不变.(3)①∵OE,OF分别平分和∴∠EOC=∠AOC,∠DOF=∠DOB.∴∵∴②,理由如下:∵OE,OF分别平分和∴∠EOC=∠AOC,∠DOF=∠DOB.∴∵∴【点睛】本题主要考查线段中点以及角平分线的定义,熟练掌握线段中点以及角平分线的定义是解决本题的关键.
相关试卷
这是一份2021学年第五章 基本平面图形综合与测试同步练习题,共23页。
这是一份数学六年级下册第五章 基本平面图形综合与测试课后测评,共25页。试卷主要包含了如图,D,下列四个说法等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共21页。试卷主要包含了能解释等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)