- 青岛版小学数学四下第一单元第9课时教案 教案 1 次下载
- 青岛版小学数学四下第一单元第10课时教案 教案 1 次下载
- 青岛版小学数学四下第二单元第2课时教案 教案 1 次下载
- 青岛版小学数学四下第二单元第3课时教案 教案 1 次下载
- 青岛版小学数学四下第二单元第4课时教案 教案 1 次下载
2020-2021学年二 生活中的多边形——多边形的面积获奖第1课时教学设计及反思
展开教材分析
本单元主要教学平行四边形、三角形和梯形的面积计算,结合这些图形的面积计算,还有求组合图形和不规则图形的面积,以及面积单位公顷与平方千米等内容。
《多边形的面积》属于空间与图形领域的内容。课程标准要求以图形为载体,培养学生的空间观念,推理能力,强调学生经历自主探究和合作交流的过程,形成积极的学习态度和情感。学生已经学习了长方形、正方形、三角形、平行四边形、梯形的特征及长方形、正方形面积计算的基础上进行教学的,是今后学习立体图形知识的基础。
平行四边形、三角形、梯形的面积计算公式都不复杂。记住这些公式,按公式列算式计算有关图形的面积,都不困难。教材编写,注意了引导方向、提供条件、开展操作、组织思考、安排交流等各个环节的活动设计,所以本单元让学生通过独立思考和自主探索,主动得出这些面积计算公式,理解各个公式的具体含义。因为这些平面图形的面积计算的教育价值,不只是知道几个公式和进行求积计算,更在于通过这些内容的教学,发展学生的形象思维和空间观念,培养推理能力和创新精神,增强参与数学学习活动的热情和信心。通过本单元的教学,学生将进一步理解面积的意义,获得计算常见图形面积的基础知识和基本技能,初步体会并应用转化策略解决问题,大力发展数学思考。
本单元的编写的主要特点:
1.强调动手操作的学习方式。
本单元教材在探索多边形面积计算方法的过程中,强调动手操作,并在操作过程中渗透平移、旋转等思想方法,让学生在学习活动中体会知识形成、发展的过程,了解知识之间的内在联系。
2.注重渗透学习方法。
本单元在探索新知识的过程中,渗透了学习数学知识的一般思路与方法。比如:学习平行四边形的面积计算,教材呈现出“联想猜测-实验验证-得出结论”的研究过程,提示了研究问题的基本思路。在研究平行四边形、三角形、梯形的面积时,充分体现了转化的思想。
教学目标
1.通过观察、操作,掌握平行四边形、三角形和梯形的面积的计算公式,并能正确计算相应图形的;了解简单组合图形面积的计算方法。
2.经历探索平行四边形、三角形和梯形面积计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3.能用有关图形的面积计算公式解决简单的实际问题。在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。
重点、
1.探索平行四边形、三角形和梯形面积计算公式的推导过程,会根据公式进行计算。
2.掌握计算组合图形面积的方法。
难点
1.利用方格纸和割补、拼摆、旋转、平移等方法,探索并掌握平行四边形、三角形和梯形面积计算公式。
2.理解和掌握多边形面积的计算公式,能正确的、灵活地运用公式进行有关的计算,解决一些实际问题。
3.用割补法计算组合图形的面积。
教学建议难点
1.重视让学生经历知识的探索过程。
本单元的教学重点是学习平行四边形、三角形、梯形的面积的计算公式。教学时,应引导学生通过动手操作、观察、分析等活动让学生自主探索,使学生不仅掌握面积计算的方法,还要参与面积计算公式的推导的过程。通过学生主动参与探索过程,培养学生分析、推断、判断、抽象、概括的能力,发展学生的空间观念。
2.发挥操作在探索活动中的作用。
教学时,教师要注重紧密联系学生的实际,从学生已有的认知经验和生活经验出发,指导学生利用学具开展操作活动,在操作活动中完成对新知的建构的过程。
3.尊重个性化的思考,鼓励策略的多样化。
学生的求知欲和好奇心较强,不同的学生认知事物的方法和角度不尽相同。教学时,应重视发展学生的个性。
4.重视渗透“转化”思想。
通过本单元中平行四边形转化成长方形,三角形转化为平行四边形或长方形,梯形转化为三角形和平行四边形,组合图形转化为基本图形等,渗透转化思想。
课时安排
本单元用11课时完成教学。
1 平行四边形的面积
第一课时
教学内容
教材第18-19页,平行四边形面积公式的推导
教学提示
《平行四边形面积》是青岛版教材四年级下册第18—19页的内容,是多边形面积单元的第一节课。它是在学生初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识图形平移、旋转的基础上进行的。本节课的学习需要学生借助数方格的方法,猜测平行四边形的面积;再引导学生运用“割补法”将平行四边形转化成一个学过的长方形,推导出平行四边形的面积计算公式,在这个过程中渗透“转化”思想。本节课积累的活动经验和数学思维方法是后面学习三角形、梯形面积计算的基础。由此可见,本节课是促进学生空间观念发展,扎实学习几何知识的重要环节。
教学目标.
知识与能力 :使学生经历探索平行四边形面积计算公式的推导过程.
过程与方法:培养学生的观察操作能力,领会割补的实验方法,渗透转化的数学思想。
情感、态度与价值观:培养自主探究和主动与他人合作交流的意识和能力。
重点、难点
重点
探索并掌握平行四边形的面积计算公式。
难点
理解平行四边形的面积计算公式的推导过程。
教学准备
教师准备:平行四边形卡片、方格板、直尺、剪刀、PPT课件
学生准备:练习纸
教学过程
(一)新课导入:
一、 创设情境,导入新课
(出示工人师傅安装玻璃的情境图)
师:看工人师傅们正在安装玻璃护栏, 仔细观看情境图,你能提出什么数学问题?
生:我发现了平行四边形的玻璃。
师:这位同学发现了一个很重要的数学信息。
生:这块玻璃的面积是多少?
师:求玻璃的面积,就需要知道平行四边形面积的计算方法,这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
设计意图:这一环节直接呈现教材主题图,让学生利用数学信息,提出数学问题,直接导入新课,简约、有效。
(二)探究新知:
1.积极引导,进行猜想。
师:为了研究的方便,咱们先从手中的这张平行四边形的卡片开始,现在老师把它放大到屏幕上,这个平行四边形的面积是多少?谁来大胆的猜测一下
生:5×7=35
师:你的意思就是这两条邻边相乘,还有其他猜测吗?(板书:5×7=35 )
生:我猜测是28平方厘米,
师:你是怎么想的?
生:我觉得可以用底乘高来计算它的面积,也就是4×7=28平方厘米
(板书:4×7=28)
2.对所猜的结果进行验证。
师:大家来看,这可是同一个平行四边形,它的面积不可能有两个结果?那现在怎么办?
生:我们可以量一量。
师:你的意思就是用面积单位量一量。打开学具袋,利用老师给你们准备的材料,想办法测量出平行四边形卡片的面积。
(学生动手操作,利用格子板数出平行四边形卡片的面积)
师:同学们,现在是不是已经有自己的结论了?谁愿意把自己的想法展示给大家?
生:老师,我是这样数的,我先数的满格,一共22个格,我又把两个半格算成一个整格,一共是6个格,22+6=28,所以这个平行四边形的面积就是28平方厘米。
师:数的真仔细,还有其他不同的数法吗?
生:老师,我是把这个角拼在这边,这样就好数了,这样一排有7个格,有这样的4排,4×7=28 ,所以,这个平行四边形的面积是28平方厘米。
师:这样数确实简便。看我们刚才的猜测,哪种是对的?
生:4×7=28,
3.深入探究,理解原理。
师:数方格虽然可以计算出平行四边形的面积,但却存在一定的局限性,并不是一个理想的计算方法。如果不用面积单位度量的方法,又有什么好的策略?
生:能不能把平行四边形转变成长方形?
师:这给我们提供了一个好的思路。怎样把平行四边形转化成长方形呢?同桌之间先讨论讨论方法,再利用学具袋中的学具,亲自动手尝试尝试。
(学生动手操作,教师巡视指导。)
师:我看不少同学有了自己的想法,谁愿意上台展示给大家。
生1:我沿这条高剪开,把这个三角形移到右边,就能拼成一个长方形。
师:剪拼后的长方形和原来平行四边形的面积相等吗?
生1:相等
师:为什么要沿高剪?不沿高剪行不行?
生1:不行,不沿高剪就拼不成长方形了。
生2:老师,我是沿平行四边形的中间的一条高剪开,平移到右边也拼成了长方形。
师:大家看这两位同学的剪拼方法,有什么相同点和不同点?
生1:剪拼前后的面积都是相等的
生2:都是沿高剪的
生3:剪拼的位置不一样
师:平行四边形的高有无数条,像这样的剪拼方法就有无数种。我们来回顾一下这两位同学的剪拼过程。(师生一起回顾两种剪拼方法,同时进行教具演示)
师:看老师这里,我沿平行四边形的这条底上的高剪开,同样也拼成了长方形。对比转化前后的图形,你有哪些发现?
生:我发现转化前后面积都是相等的
师:转化后的长方形和原来的平行四边形的面积是相等的,
生:我发现长方形的宽就是原来平行四边形的高
师:说的太好了。
生:我发现长方形的长就是原来平行四边形的底。
师:这个发现真不错,长方形的面积等于长乘宽,那么现在你能归纳出平行四边形的面积计算公式吗?
生:长方形的长是平行四边形的底,长方形的宽是平行四边形的高,所以我认为平行四边形的面积就等于底乘高。
适时板书:平行四边形的面积 = 底 × 高
长方形的面积 = 长 × 宽
设计意图:教师在学生对平行四边形的面积计算方法进行了大胆猜测之后,针对不同的猜测结果,引导学生追本溯源,回到原点,从数方格这一看似简单,实则在简单中蕴含着复杂面积问题的解决策略;接下来的动手操作、自主探究、合作交流不断接近所求的目标,发现其中的规律,帮助学生形成与积累数学模型建构的经验。这样的活动经验是后面学习其他平面图形面积计算方法,立体图形表面积计算方法乃至立体图形体积计算方法的基础,很好的落实了课标关于四基的要求。
(三)巩固新知:
师:通过转化的方法,再次验证了我们的猜测,看来猜测也是一种很好的学习方式。那现在你会计算平行四边形玻璃的面积了吗?
众生:会了,
师:怎样计算
生:只要测量出玻璃的底和高的长度,用底乘高就是玻璃的面积。
师:玻璃底和高的长度都有了,你会计算吗?
生:用1.2×0.7=0.84平方米,玻璃的面积就是0.84平方米。
师:如果直接用底乘高来求平行四边形的面积这样是不是太简单了?老师这里有一个有难度的问题你敢来挑战吗?
生:敢
师:看大屏幕,这个平行四边形的面积是多少?
生:用15×8=120平方米
师:看来同学们掌握的非常好,应该用平行四边形的底去乘相对应的高,而不能乘邻边上的高。那现在咱们已经知道了平行四边形的面积,你能求出线段CD的长度吗?同学们课下仔细研究一下。
(四)达标反馈
1.等底等高的平行四边形面积都( )。
2.把一个平行四边形沿其中的一条高剪开,平移后可以拼成一个( ),( )的长就是平行四边形的( ),长方形的宽就是平行四边形的( )。
3.一块平行四边形的麦田,底是250米,高是78米。这个麦田的面积是多少?
4. 有一块平行四边形草地,底长24m,高是底的一半。如果每平方米的草可供3只羊吃一天,这块草地可供多少只羊吃一天?
答案:1.相等 2.长方形 长方形 底 高 3. 250×78=19500(平方米)
4. 24÷2=12 24×12×3=864(只)
(五)课堂小结
师:通过本节课的学习你有什么收获?
生1:我知道了怎样求平行四边形的面积
生:平行四边形可以转化为长方形
……
师:像这样把未知的转变成已知的,就是数学上经常用到的转化思想,(板书:转化)希望同学们在以后的学习和生活当中也能利用这种方法去解决复杂的问题。好,下课!
设计意图:最后巩固提升,放手让学生独立尝试练习,为他们提供了更大的思维空间,主动实现了方法的迁移,使其总结概括能力得到一定的发展。
(六)布置作业
1.平行四边形的面积=( ),用字母表示为( )。
2.一个平行四边形的底不变,高扩大10倍,面积( )。
3.一个平行四边形的底5dm,高4dm,面积是( )dm2.
4.判断:同底等高的两个平行四边形的面积不一定相等.( )
5.选择:
两个平行四边形的面积相等,它们的底和高( )
A.相等 B.不相等 C.不一定相等
6.量出图中平行四边形的底和高,并算出它的面积.
7.一个平行四边形,底是24厘米,高2分米,面积是多少平方厘米?
8.一个平行四边形的面积是60平方厘米,底是15厘米,高是多少厘米?
9.一个边长为6厘米的正方形,与一个高为4厘米的平行四边形的面积相等,这个平行四边形的底是多少?
10.一个平行四边形的周长是78cm(如图),CD边上的高是18cm,BC是24cm,求平行四边形的面积是多少?
A D
18
B C
24
答案:1.底×高 S=ah 2,扩大10倍 3.20 4. × 5. C 6.略
7.2分米=20厘米 24×20 =480(平方厘米)
8.60÷15=4(厘米) 9.6×6÷4=9(厘米)
10.78-24×2=30 30÷2=15 15×18=270(平方厘米)
板书设计 平行四边形的面积
平行四边形的面积 = 底 × 高
转化
长方形的面积 = 长 × 宽
教学反思
本节课,我选择教材上的情境,让学生利用数学信息,提出数学问题,直接导入新课,简约、有效,达到了预期的效果。我们青岛版教材每单元都是一个连贯的情境串,我认为老师没有必要为了创造性的使用教材而创造,或为了标新立异而故意避开课本中的情境。教材是专家学者依据课程标准,遵循教育教学规律,研究学生认知特点的基础上编写而成的,是教师教与学的规范、科学的文本材料,教材的每一处设计都凝聚着编写者的创意和匠心,平时的教学中,我们一定要从编者“编”的角度去解读教材,用好教材。
在本节课中,我认为比较成功的一个环节是平行四边形转化成长方形的过程,在这个环节,我放手让学生动手操作、自主探究、合作交流,使学生意识到,“剪拼”的方法多种多样,各有千秋,但图形变形的本质(都是由平行四边形这一未知问题向长方形这一已知问题的转化)和这一过程中所蕴含的数学思想是相通的。再确认了“剪拼”方法的合理性后,这时我顺应学生的思维特点,对不同的“剪拼”方法进行了梳理回顾,带领学生找寻原平行四边形与转化后的长方形各要素间的联系,利用长方形的面积计算公式自然推导出平行四边形的面积计算公式,并且对学习过程进行了提炼和归纳,有助于学生形成与积累数学模型建构的经验。从课堂反馈来看,效果还是很不错的。
通过这节课,我还深深地感觉到,驾驭课堂的能力和有效的教育机智是我今后教学中应该着重加强的。比如,讲到量一量时,学生提出用尺子量一量,还有的学生提到用点子图量一量,当时我就有点不知所措了。因此,在今后的教学中我还要加强业务学习,不断提高教育教学艺术,让课堂生成更精彩。课题
课时
平行四边形的面积
2
三角形的面积
2
梯形的面积
2
组合图形的面积
2
公顷和平方千米
1
回顾整理
1
我学会了吗
1
总计
11
青岛版 (五四制)四年级下册二 生活中的多边形——多边形的面积一等奖教案: 这是一份青岛版 (五四制)四年级下册二 生活中的多边形——多边形的面积一等奖教案,共6页。
小学数学青岛版 (五四制)四年级下册二 生活中的多边形——多边形的面积优秀教案: 这是一份小学数学青岛版 (五四制)四年级下册二 生活中的多边形——多边形的面积优秀教案,共8页。
2020-2021学年二 生活中的多边形——多边形的面积获奖教案: 这是一份2020-2021学年二 生活中的多边形——多边形的面积获奖教案,共7页。