开学活动
搜索
    上传资料 赚现金

    2022年冀教版九年级数学下册第三十章二次函数综合练习试题(含详解)

    2022年冀教版九年级数学下册第三十章二次函数综合练习试题(含详解)第1页
    2022年冀教版九年级数学下册第三十章二次函数综合练习试题(含详解)第2页
    2022年冀教版九年级数学下册第三十章二次函数综合练习试题(含详解)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题,共28页。试卷主要包含了下列函数中,二次函数是,对于抛物线下列说法正确的是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )

    A. B. C. D.
    2、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    3、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
    A. B. C.或 D.
    4、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )
    A. B.
    C. D.
    5、下列函数中,二次函数是( )
    A.y=﹣3x+5 B.y=x(4x﹣3)
    C.y=2(x+4)2﹣2x2 D.y=
    6、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
    A.秒 B.秒 C.秒 D.1秒
    7、对于抛物线下列说法正确的是( )
    A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
    8、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
    A.1 B.-1 C. D.无法确定
    9、下列二次函数的图象中,顶点在第二象限的是( )
    A. B.
    C. D.
    10、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )

    A.2个 B.3个 C.4个 D.5个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.

    2、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.
    3、已知抛物线与轴交于A、B两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,P为AG的中点,则DP的最大值为_________.

    4、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
    5、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,平行于x的直线与抛物线交于点A,B,若△AMB为等腰直角三角形,则抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.

    (1)抛物线y=x2对应的碗宽为 ;
    (2)抛物线y=ax2(a>0)对应的碗宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碗高为 ;
    (3)已知抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.
    ①求碗顶M的坐标;
    ②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点作x轴的平行线交准碗形于点C,点P是线段上的动点,过点P作y轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.
    2、已知二次函数y=x2+2x.
    (1)写出该二次函数图象的对称轴.
    (2)已知该函数图象经过A(x1,y1),B(x2,y2)两个不同的点.
    ①当x1=3n+4,x2=2n﹣1,且y1=y2时,求n的值.
    ②当x1>﹣1,x2>﹣1时,求证:(x1﹣x2)(y1﹣y2)>0
    3、已知抛物线经过,且顶点在y轴上.
    (1)求抛物线解析式;
    (2)直线与抛物线交于A,B两点.
    ①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
    ②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
    4、已知二次函数y=ax2﹣4ax+3a.
    (1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;
    (2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
    (3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请直接写出t的最大值.
    5、某运动员在推铅球时,铅球经过的路线是抛物线的一部分(如图),落地点B的坐标是(10,0),已知抛物线的函数解析式为y=﹣+c.

    (1)求c的值;
    (2)计算铅球距离地面的最大高度.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
    B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
    故当时,,即,故B错误,符合题意;
    C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
    D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
    故选:B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
    2、A
    【解析】
    【分析】
    根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向
    【详解】
    解:∵的对称轴为,且
    ∴若,
    则离对称轴远,则抛物线的开口朝下,即,故A正确
    若,
    则离对称轴远,则抛物线的开口朝上,即,故C不正确
    对于B,D选项不能判断的符号
    故选A
    【点睛】
    本题考查了二次函数图象的性质,掌握的性质是解题的关键.
    3、A
    【解析】
    【分析】
    先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
    【详解】
    解:∵当x1=1、x2=3时,y1=y2,
    ∴点A与点B为抛物线上的对称点,
    ∴,
    ∴b=-4;
    ∵对于任意实数x1、x2都有y1+y2≥2,
    ∴二次函数y=x2-4x+n的最小值大于或等于1,
    即,
    ∴c≥5.
    故选:A.
    【点睛】
    本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
    4、B
    【解析】
    【分析】
    由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.
    【详解】
    解:将抛物线先向上平移1个单位,则函数解析式变为
    再将向左平移2个单位,则函数解析式变为,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
    5、B
    【解析】
    【分析】
    根据二次函数的定义逐个判断即可.
    【详解】
    解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
    B.是二次函数,故本选项符合题意;
    C.是一次函数,不是二次函数,故本选项不符合题意;
    D.不是二次函数,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
    6、A
    【解析】
    【分析】
    根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
    【详解】
    解:由题意得,
    当h=3时,,
    解得,
    ∴球不低于3米的持续时间是1-0.6=0.4(秒),
    故选:A.
    【点睛】
    此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
    7、D
    【解析】
    【分析】
    根据二次函数的性质对各选项分析判断即可得解.
    【详解】
    解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
    ∴A选项不正确;
    由抛物线,可知其最小值为-2,∴B选项不正确;
    由抛物线,可知其顶点坐标,∴C选项不正确;
    在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
    故选:D.
    【点睛】
    本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
    8、C
    【解析】
    【分析】
    分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
    【详解】
    当a>0时,∵对称轴为x=,
    当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
    ∴4a+2-2=4.
    ∴a=1,
    当a<0时,同理可得
    y有最大值为2; y有最小值为4a+2,
    ∴2-(4a+2)=4,
    ∴a=-1,
    综上,a的值为
    故选:C
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
    9、C
    【解析】
    【分析】
    根据二次函数的顶点式求得顶点坐标,即可判断.
    【详解】
    解:A.二次函数的顶点为(1,3),在第一象限,不合题意;
    B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;
    C.二次函数的顶点为(﹣1,3),在第二象限,符合题意;
    D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;
    故选:C.
    【点睛】
    本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
    10、C
    【解析】
    【分析】
    根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
    【详解】
    ∵抛物线开口向上,
    ∴a>0,
    ∵抛物线与y轴的交点在y轴的负半轴上,
    ∴c<0,
    ∵抛物线的对称轴在y轴的右边,
    ∴b<0,
    ∴,
    故①正确;
    ∵二次函数的图像与x轴交于点,
    ∴a-b+c=0,
    根据对称轴的左侧,y随x的增大而减小,
    当x=-2时,y>0即,
    故②正确;
    ∵,

    ∴b= -2a,
    ∴3a+c=0,
    ∴2a+c=2a-3a= -a<0,
    故③正确;
    根据题意,得,
    ∴,
    解得,
    故④错误;
    ∵=0,
    ∴,
    ∴y=向上平移1个单位,得y=+1,
    ∴为方程的两个根,且且.
    故⑤正确;
    故选C.
    【点睛】
    本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
    二、填空题
    1、##
    【解析】
    【分析】
    过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
    【详解】
    解:如图,过点作,交于点,

    ∠C=90°.直角边AC=3m、BC=4m,


    设,则
    四边形是矩形





    整理得
    设矩形的面积为,则
    当取得最大值时,,此时
    故答案为:
    【点睛】
    本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
    2、
    【解析】
    【分析】
    根据题意可得2020年的蔬菜产量为,2021年的蔬菜产量为,2021年的蔬菜产量为y万吨,由此即可得.
    【详解】
    解:根据题意可得:2020年的蔬菜产量为,
    2021年的蔬菜产量为,
    ∴,
    故答案为: .
    【点睛】
    题目主要考查二次函数的应用,理解题意,熟练掌握增长率问题是解题关键.
    3、
    【解析】
    【分析】
    如图,连接BG.利用三角形的中位线定理证明DP=BG,求出BG的最大值,即可解决问题.
    【详解】
    解:如图,连接BG.

    ∵AP=PG,AD=DB,
    ∴DP=BG,
    ∴当BG的值最大时,DP的值最大,
    ∵,
    ∴C(5,),B(9,0),
    ∴BC==,
    当点G在BC的延长线上时,BG的值最大,最大值=+,
    ∴DP的最大值为,
    故答案为:.
    【点睛】
    本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    4、
    【解析】
    【分析】
    利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
    【详解】
    y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2
    故本题答案为:y=(x﹣1)2+2.
    【点睛】
    本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.
    5、-1
    【解析】
    【分析】
    将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.
    【详解】
    解:
    =
    =
    ∴抛物线顶点坐标为(1,-2),在第四象限,
    又抛物线与轴相交于A,两点.
    ∴抛物线开口向上,即
    设为A,B两点的横坐标,

    ∵线段的长不小于2,





    解得,

    当时,有最小值,最小值为:
    故答案为:-1
    【点睛】
    本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.
    三、解答题
    1、 (1)4
    (2),
    (3)(2,-3),
    【解析】
    【分析】
    (1)根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m),代入抛物线的解析式,求出A、B两点坐标即可解决问题.
    (2)利用(1)中方法可求碗宽,根据等腰直角三角形可知碗高是碗宽的一半.
    (3)①由碗高为3求出a,再求顶点坐标即可;②作QS⊥BP于S,找到PQ和QS的关系后即可解决问题.
    (1)
    解:根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m).
    把B(m,m)代入y=x2,得,解得,m=2或0(舍去),
    ∴A(﹣2,2),B(2,2),
    ∴AB=4,即碗宽为4;
    故答案为:4.
    (2)
    解:类似(1)设B(n,n),代入y=a x2,得,解得,n=或0(舍去),AB=,即碗宽为;
    抛物线y=a(x﹣2)2+3是由抛物线y=ax2平移得到的,所以,它们的碗宽一样为,根据等腰直角三角形的性质,可知可知碗高是碗宽的一半,即;
    故答案为:,.
    (3)
    解:①抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.由(2)可知,
    解得,,抛物线解析式为,化成顶点式为;
    则M的坐标为(2,-3);
    ②如图,作QS⊥BP于S,由旋转可知∠PBO=30°,因为过点P作y轴的平行线交准碗形A'MB'于点Q,
    ∴PQ⊥OB,
    ∴∠QPB=60°,∠PQS=30°,
    ∴PQ=2PS,,
    当QS等于碗高时,QS最大,此时PQ长度的最大,
    由(2)可知QS最大为3,则,;
    PQ长度的最大值为.

    【点睛】
    本题考查了二次函数的性质和直角三角形的性质,解题关键是准确理解题意,熟练运用二次函数的性质和直角三角形的性质求解.
    2、 (1)直线x=-1
    (2)①-1;②见解析
    【解析】
    【分析】
    (1)直接根据对称轴公式求解;
    (2)①将x1和x2代入函数表达式,根据y1=y2得到方程,解之即可;
    ②将(x1﹣x2)(y1﹣y2)变形为(x1﹣x2)2(x1+x2+2),再根据x1>﹣1,x2>﹣1判断出结果的符号,即可证明.
    (1)
    解:二次函数y=x2+2x中,
    对称轴为直线x==-1;
    (2)
    ①当x1=3n+4,x2=2n﹣1,且y1=y2时,
    y1=(3n+4)2+2(3n+4)=9n2+30n+24,
    y2=(2n﹣1)2+2(2n﹣1)=4n2-1,
    则9n2+30n+24=4n2-1,
    解得:n=-5或n=-1;
    当时, 不符合题意,舍去,
    所以
    ②(x1﹣x2)(y1﹣y2)
    =(x1﹣x2)[(x12+2x1)﹣(x22+2x2)]
    =(x1﹣x2)(x12+2x1﹣x22﹣2x2)
    =(x1﹣x2)2(x1+x2+2)
    ∵x1>﹣1,x2>﹣1,
    ∴x1+x2+2>-1-1+2=0,
    又∵A(x1,y1),B(x2,y2)是两个不同的点,
    ∴x1≠x2,
    ∴(x1﹣x2)2>0,
    ∴(x1﹣x2)2(x1+x2+2)>0,
    即(x1﹣x2)(y1﹣y2)>0.
    【点睛】
    本题考查了二次函数的对称轴,解一元二次方程,因式分解的应用,解题的关键是要灵活运用因式分解将式子变形.
    3、 (1)
    (2)①c的值为-1,②
    【解析】
    【分析】
    (1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;
    (2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设,.把代入中,得,根与系数的关系可得,由勾股定理得,,根据垂直平分线的性质可得,化简可得,进而可得当时,n随k的增大而减小,由可得,进而求得的取值范围
    (1)
    ∵抛物线经过,且顶点在y轴上,
    ,解得
    ∴抛物线解析式为.
    (2)
    ①依题意得:当时,轴,
    与∠PBA都不可能为90°,
    ∴只能是,,∴点P在AB的对称轴(y轴)上,
    ∴点P为抛物线的顶点,即.
    不妨设点A在点B的左侧,直线与y轴交于点C.
    ,,

    ,,


    ∴点
    把代入中,得:
    解得:,(不合题意,舍去).
    ∴c的值为-1.

    ②设,.
    把代入中,得,
    ,由根与系数的关系可得,.

    由勾股定理得,
    ∵点N在AB的垂直平分线上,



    化简得.
    ∵直线与x轴相交,∴点A,B不关于y轴对称,

    又,

    ,即,
    .
    将代入,得,
    .
    由反比例函数的性质,可知:当时,.
    在二次函数中,
    ,对称轴为直线,
    ∴当时,n随k的增大而减小,

    .

    【点睛】
    本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.
    4、 (1)对称轴x=2;交点坐标为(1,0)和(3,0)
    (2)10
    (3)4
    【解析】
    【分析】
    (1)解析式化成顶点式即可求得对称轴,令y=0,得到关于x的方程,解方程即可求得抛物线与x轴的交点坐标;
    (2)构建方程求出a的值,再求出△OPQ的面积即可解决问题;
    (3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,可得t+1≤5且t≥﹣1,由此即可解决问题.
    (1)
    解:∵y=ax2﹣4ax+3a=a(x﹣2)2﹣a,
    ∴对称轴x=2;
    令y=0,则ax2﹣4ax+3a=0,
    解得x=1或3,
    ∴抛物线与x轴的交点坐标为(1,0)和(3,0);
    (2)
    解:∵该二次函数的图象开口向下,且对称轴为直线x=2,
    ∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),
    ∴4a﹣8a+3a=2,
    ∴a=﹣2,
    ∴y=﹣2x2+8x﹣6,
    ∵当1≤x≤2时,y随x的增大而增大,
    ∴当x=1时,y取到在1≤x≤2上的最小值0.
    ∵当2≤x≤4时,y随x的增大而减小,
    ∴当x=4时,y取到在2≤x≤4上的最小值﹣6.
    ∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).
    ∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;
    (3)
    解:∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,
    ∴当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,
    ∴t+1≤5且t≥﹣1,
    ∴﹣1≤t≤4,
    ∴t的最大值为4.
    【点睛】
    本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,函数的最值问题等知识,解题的关键是读懂题意、灵活运用所学知识解决问题.
    5、 (1);
    (2)铅球距离地面的最大高度为
    【解析】
    【分析】
    (1)把(10,0)代入函数解析式中,即可求得c的值;
    (2)直接利用对称轴的值,代入函数关系式进而得出答案.
    (1)
    把(10,0)代入函数解析式中得:

    解得:
    (2)
    当x=﹣时,y最大=
    所以铅球距离地面的最大高度为3m.
    【点睛】
    本题考查了二次函数的图象与性质,掌握二次函数的图象与性质是关键,属于基础题.

    相关试卷

    数学九年级下册第30章 二次函数综合与测试一课一练:

    这是一份数学九年级下册第30章 二次函数综合与测试一课一练,共29页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和等内容,欢迎下载使用。

    初中冀教版第30章 二次函数综合与测试习题:

    这是一份初中冀教版第30章 二次函数综合与测试习题,共31页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。

    初中数学第30章 二次函数综合与测试课堂检测:

    这是一份初中数学第30章 二次函数综合与测试课堂检测,共31页。试卷主要包含了二次函数图像的顶点坐标是,抛物线的顶点为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map