2020-2021学年第30章 二次函数综合与测试测试题
展开
这是一份2020-2021学年第30章 二次函数综合与测试测试题,共23页。试卷主要包含了已知平面直角坐标系中有点A等内容,欢迎下载使用。
九年级数学下册第三十章二次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若函数,则当函数y=15时,自变量的值是( )A. B.5 C.或5 D.5或2、下列实际问题中的y与x之间的函数表达式是二次函数的是( )A.正方体集装箱的体积,棱长xmB.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.高为14m的圆柱形储油罐的体积,底面圆半径xm3、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线4、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )A. B.C. D.5、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>06、已知二次函数的图象经过,,则b的值为( )A.2 B. C.4 D.7、抛物线y=x2+4x+5的顶点坐标是( )A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)8、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )A. B. C. D.或9、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )A.4 B.2 C.6 D.310、抛物线的顶点坐标为( )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当k-2≤x≤k时,函数y=x2-4x+4(k为常数)的最小值为4,则k的值是____.2、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.3、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.4、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.5、二次函数的图像不经过第______象限.三、解答题(5小题,每小题10分,共计50分)1、如图,已知抛物线与x轴交于点、B,与y轴交于点.(1)求抛物线的表达式;(2)若M是抛物线上点A,C之间(含点A,C)的一个动点,直接写出点M的纵坐标的取值范围.(3)平移直线,设平移后的直线为l,记l与y轴的交点为,若l与上方的抛物线有唯一交点,求m的取值范围.2、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.(1)用含 的代数式表示顶点 的坐标:(2)当顶点 在 内部, 且 时,求抛物线的表达式:(3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.3、已知一抛物线的顶点为(2,4),图象过点(1,3).(1)求抛物线的解析式;(2)动点P(x,5)能否在抛物线上?请说明理由;(3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.4、如图,一名垒球运动员进行投球训练,站在点O开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.(1)求抛物线的函数关系式;(2)求点O到训练墙AB的距离OA的长度.5、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,AD≤MN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.(1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;(2)若a=150.求矩形隔离区ABCD面积的最大值. -参考答案-一、单选题1、D【解析】【分析】根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.【详解】解:当x<3时,令2x2-3=15,解得x=-3;当x≥3时,令3x=15,解得x=5;由上可得,x的值是-3或5,故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.2、D【解析】【分析】根据题意,列出关系式,即可判断是否是二次函数.【详解】A.由题得:,不是二次函数,故此选项不符合题意;B.由题得:,不是二次函数,故此选项不符合题意;C.由题得:,不是二次函数,故此选项不符合题意;D.由题得:,是二次函数,故此选项符合题意.故选:D.【点睛】本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.3、B【解析】【分析】由抛物线解析式的顶点式即可求得抛物线的对称轴.【详解】抛物线的对称轴是直线,故选:B.【点睛】本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.4、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B.【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.5、D【解析】【分析】由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.【详解】解:A、抛物线开口向下,且与轴正半轴相交,,,,结论A错误,不符合题意;B、抛物线顶点坐标为,,,,即,结论B错误,不符合题意;C、抛物线顶点坐标为,,,,结论C错误,不符合题意;D、,,,结论D正确,符合题意.故选:D.【点睛】本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.6、C【解析】【分析】由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.【详解】解: 二次函数的图象经过,, 二次函数图象的对称轴为: 解得: 故选C【点睛】本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.7、D【解析】【分析】利用顶点公式(﹣,),进行解题.【详解】解:∵抛物线y=x2+4x+5∴x=﹣=﹣=﹣2,y==1∴顶点为(﹣2,1)故选:D.【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).8、D【解析】【分析】根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.【详解】由图可知,使得时使成立的x的取值范围是或故选:D.【点睛】本题考查了二次函数与不等式,准确识图是解题的关键.9、C【解析】【分析】将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.【详解】解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C(2,-2)点C关于x轴对称的点的坐标为(2,2),连接,如图,∵∴故选:C【点睛】本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.10、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为. 故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.二、填空题1、0或6##6或0【解析】【分析】先求出函数的顶点坐标,再根据题意分情况讨论即可求解.【详解】∵y=x2-4x+4=(x-2)2∴顶点坐标为(2,0)∴当k≤2时,x=k时,函数y=x2-4x+4的最小值为4故k2-4k+4=4解得k=0或k=4(舍去)当k-2≥2时,x= k-2时,函数y=x2-4x+4的最小值为4故(k-2)2-4(k-2)+4=4解得k=6或k=2(舍去)故答案为6或0.【点睛】此题主要考查二次函数的图象与性质,解题的关键是根据题意分情况讨论.2、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大∴自变量x的取值范围是故答案为:.【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.3、x=-5或x=0##或【解析】【分析】根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.【详解】解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),∴ax2+bx+4=0的解为:x=-4或x=1,则在关于x的方程a(x+1)2+b(x+1)=-4中,x+1=-4或x+1=1,解得:x=-5或x=0,即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,故答案为:x=-5或x=0.【点睛】本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.4、【解析】【分析】将函数解析式化为顶点式,确定图象的对称轴及顶点坐标,得到3个整点的位置,由此得到不等式组,求解即可.【详解】解:∵y=ax2﹣2ax+a+2=,∴函数的对称轴为直线x=1,顶点坐标为(1,2),∴P,Q两点关于直线x=1对称,根据题意,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点(不包括边界)恰有3个整点,这些整点是(0,1),(1,1),(2,1),∵当x=0时,y=a+2,∴,当x=-1时,y=4a+2,∴,∴,解得,故答案为:. .【点睛】此题考查了将二次函数一般式化为顶点式,二次函数的性质,一元一次不等式组的应用,根据二次函数的对称轴及顶点确定3个点的位置,由此顶点不等式组是解题的关键.5、二【解析】【分析】根据题目中的函数解析式和二次函数的性质可以得到该函数图象不经过哪个象限.【详解】解:∵y=-x2+4x-1=-(x-2)2+3,∴该函数图象的顶点坐标为(2,3)且经过点(0,-1),函数图象开口向下,∴该函数图象不经过第二象限,故答案为:二.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题1、 (1);(2);(3)-1<m<3或.【解析】【分析】(1)利用待定系数法求解;(2)将函数解析式化为顶点式,得到抛物线的顶点坐标,即可得到的取值范围;(3)利用待定系数法求出直线AC的解析式,得到直线l的解析式为y=-x+m,求出点B的坐标,由此得到当直线l与BC段相交时,m的取值范围;解,求出当时m的值,由此得到m的取值范围.(1)解:将点、代入中,得,解得,∴抛物线的表达式为;(2)解:∵,M是抛物线上点A,C之间(含点A,C)的一个动点,,∴抛物线的顶点坐标为(1,4),∴点M的纵坐标的取值范围为;(3)解:设直线AC的解析式为y=kx+b,∴,解得,∴直线AC的解析式为y=-x+3,∵设平移后的直线为l,记l与y轴的交点为,∴直线l的解析式为y=-x+m,∵抛物线的对称轴为直线x=1,点A(3,0),∴B(-1,0),将点B坐标代入y=-x+m,得m=-1,当直线l与BC段相交时,m的取值范围是-1<m<3;当直线l与AC段相交时,则,整理得,当时,得;综上,若l与上方的抛物线有唯一交点,m的取值范围为-1<m<3或.【点睛】此题考查了待定系数法求函数解析式,将一般式解析式化为顶点式,直线的平移,一元二次方程的判别式,图象交点问题,综合掌握一次函数与二次函数的知识是解题的关键.2、 (1)(2);(3)1<a<3【解析】【分析】(1)利用配方法将抛物线解析式化为顶点式即可解答;(2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;(3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解(1)解:拋物线 ,∴顶点C的坐标为;(2)解:对于,当x=0时,y=5,当y=0时,x=5,∴A(5,0),B(0,5),∵顶点 在 内部, 且 ,∴,∴a=2,∴拋物线的表达式为 ;(3)解:由题意,平移后的抛物线的顶点P的坐标为,∵平移后的抛物线的顶 点 仍在 内,∴,解得:1<a<3,即 的取值范围为1<a<3.【点睛】本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.3、 (1)(2)不在,见解析(3)y1<y2,见解析【解析】【分析】(1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;(2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;(3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.(1)设抛物线的解析式为把点(1,3)的坐标代入中,得a+4=3∴ 即抛物线的解析式为;(2)动点P(x,5)不在抛物线上理由如下:在中,当y=5时,得即此方程无解故点P不在抛物线上;(3)y1<y2理由如下:抛物线的对称轴为直线x=2∵二次项系数−1<0,且 ∴函数值随自变量的增大而增大即y1<y2【点睛】本题考查了待定系数法求二次函数的解析式,二次函数与一元二次方程的关系,二次函数的图象与性质等知识,熟练掌握这些知识是关键,属于二次函数的基础题目.4、 (1)抛物线的关系式为y=-0.01(x-20)2+6;(2)点O到训练墙AB的距离OA的长度为(20+10)米.【解析】【分析】(1)根据抛物线的顶点设关系式为y=a(x-20)2+6,再根据点C的坐标可得关系式;(2)把y=3代入可得答案.(1)解:由题意得,顶点E(20,6)和C(0,2),设抛物线的关系式为y=a(x-20)2+6,∴2=a(0-20)2+6,解得a=-0.01,∴抛物线的关系式为y=-0.01(x-20)2+6;(2)(2)当y=3时,3=-0.01(x-20)2+6,解得x1=20+10,x2=20-10(舍去),答:点O到训练墙AB的距离OA的长度为(20+10)米.【点睛】本题考查了二次函数的实际应用,利用待定系数法得到抛物线的关系式是解题关键.5、 (1)AD=20米;(2)当x=100时,S最大=5000米2.【解析】【分析】(1)设AD=x,AB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;(2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=然后配方为S即可.(1)解:设AD=x,AB=(200-x)÷2=100-,∴根据题意得:,整理得,解得:,∵a=30,∴AD=20米;(2)解:矩形隔离区ABCD面积用S表示,则S=,∵a=150>100,∴当x=100时,S最大=5000米2.【点睛】本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试习题,共29页。试卷主要包含了抛物线的顶点坐标为,抛物线的对称轴是等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试习题,共31页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。