![2022年精品解析冀教版九年级数学下册第三十章二次函数综合训练试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12720953/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版九年级数学下册第三十章二次函数综合训练试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12720953/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版九年级数学下册第三十章二次函数综合训练试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12720953/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第30章 二次函数综合与测试巩固练习
展开
这是一份2021学年第30章 二次函数综合与测试巩固练习,共26页。试卷主要包含了已知点等内容,欢迎下载使用。
九年级数学下册第三十章二次函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2、根据表格对应值:x1.11.21.31.4ax2+bx+c﹣0.590.842.293.76判断关于x的方程ax2+bx+c=2的一个解x的范围是( )A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定3、已知,是抛物线上的点,且,下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则4、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )A. B. C.3 D.或35、在抛物线的图象上有三个点,,,则、、的大小关系为( )A. B. C. D.6、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是( )A.或6 B.或6 C.或6 D.或7、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).A. B. C.或 D.8、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )A. B.C. D.9、已知,是抛物线上的点,且,下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则10、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A.14 B.11 C.6 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).2、定义:直线y=ax+b(a≠0)称作抛物线y=ax2+bx(a≠0)的关联直线. 根据定义回答以下问题:(1)已知抛物线y=ax2+bx(a≠0)的关联直线为y=x+2, 则该抛物线的顶点坐标为_________;(2)当a=1时, 请写出抛物线y=ax2+bx与其关联直线所共有的特征(写出一条即可):___________________________________.3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.4、把二次函数的图象关于轴对称后得到的图象的函数关系式为_________.5、抛物线y=(x﹣1)2+3的顶点坐标为___.三、解答题(5小题,每小题10分,共计50分)1、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;(2)若每日销售利润达到900元,售价为多少元?(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?2、已知函数(为常数).(1)若图象经过点,判断图象经过点吗?请说明理由;(2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;(3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.3、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.(1)求 b 的值;(2)当 y1 y2 时,直接写出 x 的取值范围.4、已知二次函数的图像经过点(1,4)和点(2,3).(1)求这个二次函数的表达式;(2)求该二次函数图像的顶点坐标.(3)当x在什么范围内时,y随x的增大而减小?5、如图,抛物线y=ax2+bx+4经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点是拋物线在轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,,DC.(1)求抛物线的函数表达式;(2)当△BCD的面积与△AOC的面积和为时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,为顶点的四边形是平行四边形.请直接写出点M的坐标;若不存在,请说明理由. -参考答案-一、单选题1、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-<0,得b<0.∴ 所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.2、B【解析】【分析】利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.【详解】解:当x=1.3时,ax2+bx+c=2.29,当x=1.2时,ax2+bx+c=0.84,∵0.84<2<2.29,∴方程解的范围为1.2<x<1.3,故选:B【点睛】本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.3、C【解析】【分析】先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.【详解】解:抛物线的对称轴为:直线,∵,当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.4、C【解析】【分析】把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.【详解】解:,向左平移个单位后的函数解析式为,函数图象经过坐标原点,,解得.故选:C.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.5、C【解析】【分析】把三个点,,的横坐标代入解析式,然后比较函数值大小即可.【详解】解:把三个点,,的横坐标代入解析式得,;;;所以,,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.6、C【解析】【分析】表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.【详解】解:∵y=-x2+mx,∴抛物线开口向下,抛物线的对称轴为x=-,①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,∴-(-2)2-2m=5,解得:m=-;②当≥1,即m≥2时,当x=1时,函数最大值为5,∴-12+m=5,解得:m=6.③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,∴-()2+m•=5解得m=2(舍去)或m=-2(舍去),综上所述,m=-或6,故选:C.【点睛】本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.7、A【解析】【分析】先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.【详解】解:∵当x1=1、x2=3时,y1=y2,∴点A与点B为抛物线上的对称点,∴,∴b=-4;∵对于任意实数x1、x2都有y1+y2≥2,∴二次函数y=x2-4x+n的最小值大于或等于1,即,∴c≥5.故选:A.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.8、B【解析】【分析】由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.【详解】解:将抛物线先向上平移1个单位,则函数解析式变为 再将向左平移2个单位,则函数解析式变为,故选:B.【点睛】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.9、A【解析】【分析】根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向【详解】解:∵的对称轴为,且∴若,则离对称轴远,则抛物线的开口朝下,即,故A正确若,则离对称轴远,则抛物线的开口朝上,即,故C不正确对于B,D选项不能判断的符号故选A【点睛】本题考查了二次函数图象的性质,掌握的性质是解题的关键.10、B【解析】【分析】首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.【详解】解:,抛物线顶点的坐标为,,点的横坐标为,把代入,得到,,.故选:B.【点睛】本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.二、填空题1、<【解析】【分析】根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断的大小关系.【详解】解:∵二次函数y=(x﹣1)2,,开口向上,对称轴为又点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,故答案为:【点睛】本题考查了二次函数图象的性质,掌握二次函数图象的性质是解题的关键.2、 (-1,-1) (1,1+b).【解析】【分析】(1)由关联直线的定义可求得a和b的值,可求得抛物线解析式,化为顶点式可求得其顶点坐标;(2)由关联直线的定义可求得关联直线解析式,可写出其共有特征.【详解】解:(1)∵抛物线y=ax2+bx(a≠0)的关联直线为y=x+2,∴a=1,b=2,∴抛物线解析式为y=x2+2x=(x+1)2-1,∴抛物线顶点坐标为(-1,-1),故答案为:(-1,-1);(2)当a=1时,抛物线解析式为y=x2+bx,则关联直线解析式为y=x+b,∴当x=1时,函数值都为1+b,∴抛物线及其关联直线都过点(1,1+b),故答案为:过点(1,1+b).【点睛】本题主要考查二次函数的性质,理解好题目中所给关联直线的解析式与抛物线解析式之间的关系是解题的关键.3、##【解析】【分析】分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.【详解】解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,可知:顶点B(9,12),抛物线经过原点,设抛物线的解析式为y=a(x-9)2+12,将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,故抛物线的解析式为:y=-(x−9)²+12,∵PC=12,=1:2,∴点C的坐标为(12,0),AC=6,即可得点A的坐标为(12,6),当x=12时,y=−(12−9)²+12==CE,∵E在A的正上方,∴AE=CE-AC=-6=,故答案为:.【点睛】本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.4、【解析】【分析】函数的图象关于y轴对称后的顶点坐标为(-1,0),然后根据顶点式写出解析式.【详解】解:的顶点坐标是(1,2),由于(1,2)关于y轴的对称点为(-1,2),所以得到的图象的函数解析式是;故答案为.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、(1,3)【解析】【分析】根据顶点式判断顶点即可.【详解】解:∵抛物线解析式为y=(x﹣1)2+3∴顶点坐标是(1,3).故答案为:(1,3)【点睛】本题考查了二次函数解析式---顶点式,明确的顶点坐标为(h,k)是解答本题的关键.三、解答题1、 (1)w=-3x2+360x-9600;(2)若每日销售利润达到900元,售价为50元;(3)当销售价为55元时,可以获得最大利润,为1125元.【解析】【分析】(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;(2)根据(1)的关系式列出一元二次方程即可;(3)根据题中所给的自变量的取值得到二次的最值问题即可.(1)解:w=(x-40)[105-3(x-45)]=(x-40)(-3x+240)=-3x2+360x-9600,答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;(2)解:由题意得,w=-3x2+360x-9600=900,解得:x1=50,x2=70>55(舍),答:若每日销售利润达到900元,售价为50元;(3)解:w=-3x2+360x-9600=-3(x-60)2+1200,∵a=-3<0,∴抛物线开口向下.又∵对称轴为x=60,∴当x<60,w随x的增大而增大,由于50≤x≤55,∴当x=55时,w的最大值为1125元.∴当销售价为55元时,可以获得最大利润,为1125元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.2、 (1)经过,理由见解析(2)n=﹣m2﹣6m.(3)4或6【解析】【分析】(1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;(2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.(3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.(1)解:经过,把点(﹣2,4)代入y=x2+bx+3b中得:4﹣2b+3b=4,解得b=0,∴此函数表达式为:y=x2,当x=2时,y=4,∴图象经过点(2,4);(2)解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),∴﹣=m,=n,∴b=﹣2m,把b=﹣2m代入=n得n==﹣m2﹣6m.即n关于m的函数解析式为n=﹣m2﹣6m.(3)把x=0代入y=x2+bx+3b得y=3b,∵抛物线不经过第三象限,∴3b≥0,即b≥0,∵y=x2+bx+3b=(x+)2﹣+3b,∴抛物线顶点(﹣,﹣+3b),∵﹣≤0,∴当﹣+3b≥0时,抛物线不经过第三象限,解得b≤12,∴0≤b≤12,﹣6≤﹣≤0,∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,把x=﹣6代入y=x2+bx+3b得y=36﹣3b,把x=1代入y=x2+bx+3b得y=1+4b,当36﹣3b﹣(﹣+3b)=16时,解得b=20(不符合题意,舍去)或b=4.当1+4b﹣(﹣+3b)=16时,解得b=6或b=﹣10(不符合题意,舍去).综上所述,b=4或6.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.3、 (1)(2)或【解析】【分析】(1)将点A(4,4)代入进行解答即可得;(2)由图像即可得.(1)解:将点A(4,4)代入得,解得.(2)解:由图像可知,当或时,.【点睛】本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.4、 (1)(2)(3)当时,y随x的增大而减小【解析】【分析】(1)将点(1,4)和(2,3)代入中,得,进行计算即可得;(2)将配方得,即可得;(3)根据二次函数的性质得即可得.(1)解:将点(1,4)和(2,3)代入中,得解得则该二次函数表达式为.(2)解:配方得:,则顶点坐标为(1,4).(3)解:根据二次函数的性质得,当时,y随x的增大而减小.【点睛】本题考查了二次函数,解题的关键是掌握二次函数的性质.5、 (1)(2)m=(3)存在,M点的坐标为或或或.【解析】【分析】(1)把,代入中进行求解即可;(2)如图,连接,求解对称轴为, 由题意可知,,,结合,与,利用即可得到答案;(3)由(2)得:D点为,再分两种情况讨论,①当BD是平行四边形的一条边时, 如图,当在轴的上方时,由平行四边形的性质与抛物线的性质可得关于抛物线的对称轴对称,重合, 设点, 如图,当在轴的下方时,由平行四边形对角线中点坐标相同得到,, 解方程求解,可得,;②如图,当BD是平行四边形的对角线时, 则,同理可得关于抛物线的对称轴对称,从而可得 从而可得答案.(1)(1)把,代入:,解得:∴抛物线表达式为:;(2)如图,连接,∵抛物线解析式为:,且抛物线与y轴交于点C∴抛物线的对称轴为, ∴OC=4,∵点D的横坐标为m,∴,∵,,∴AO=1,BO=2,∴又∵∴, 解得:,,当时,点在对称轴上,不合题意,舍去,所以取,综上,;(3)当时,D点为, ①当BD是平行四边形的一条边时, 如图,当在轴的上方时,由平行四边形可得,关于抛物线的对称轴对称, 重合, 如图,当在轴的下方时,设点, ,∴,(平行四边形对角线中点坐标相同),∴,解得或∴或,∴或; ②如图,当BD是平行四边形的对角线时, 则, ∴,关于抛物线的对称轴对称,, 综上,点的坐标为: 或或或.【点睛】主要考查了二次函数的综合,二次函数的性质,平行四边形的性质,掌握以上知识是解题的关键.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共28页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和,对于抛物线下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课堂检测,共28页。试卷主要包含了下列函数中,随的增大而减小的是,抛物线的顶点坐标为,抛物线y=42+3的顶点坐标是,抛物线y=﹣2等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试测试题,共33页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)