开学活动
搜索
    上传资料 赚现金

    2022年冀教版九年级数学下册第三十章二次函数月考练习题(精选)

    2022年冀教版九年级数学下册第三十章二次函数月考练习题(精选)第1页
    2022年冀教版九年级数学下册第三十章二次函数月考练习题(精选)第2页
    2022年冀教版九年级数学下册第三十章二次函数月考练习题(精选)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试综合训练题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试综合训练题,共33页。试卷主要包含了二次函数y=a+bx+c,抛物线的对称轴是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数月考
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有(  )
    A.1个 B.2个 C.3个 D.4个
    2、若二次函数与轴的一个交点为,则代数式的值为( )
    A. B. C. D.
    3、二次函数的最大值是( )
    A. B. C.1 D.2
    4、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是(  )

    A.4 B.3 C.2 D.1
    5、抛物线的对称轴是( )
    A.直线 B.直线 C.直线 D.直线
    6、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
    A.-2 B.-1 C.4 D.7
    7、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
    A. B. C.3 D.或3
    8、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )

    A.2 个 B.3 个 C.4 个 D.5 个.
    9、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
    A.1 B.-1 C. D.无法确定
    10、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )

    A.米 B.10米 C.米 D.12米
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知二次函数,若,则y的取值范围是______.
    2、将抛物线y=x2向左平移3个单位所得图象的函数表达式为___.
    3、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.

    4、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
    5、最大值与最小值之和为_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知抛物线经过点,与y轴交于点C,连接.

    (1)求抛物线的解析式;
    (2)在直线上方抛物线上取一点P,过点P作轴交边于点Q,求的最大值;
    (3)在直线上方抛物线上取一点D,连接.交于点F,当时,求点D的坐标.
    2、已知二次函数y=ax2﹣4ax+3a.
    (1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;
    (2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
    (3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请直接写出t的最大值.
    3、已知在平面直角坐标系中,拋物线经过点、,顶点为点.

    (1)求抛物线的表达式及顶点的坐标;
    (2)联结,试判断与是否相似,并证明你的结论;
    (3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.
    4、已知抛物线与x轴有交点,求m的取值范围.
    5、已知如图,二次函数的图像与x轴相交于点A、B两点,与y轴相交于点C,连接AC、BC,,抛物线的顶点为D.

    (1)求抛物线的解析式;
    (2)抛物线的对称轴上有一动点E,当取得最小值时,E点坐标为________;此时AE与BC的位置关系是________,________;
    (3)抛物线对称轴右侧的函数图像上是否存在点M,满足,若存在求M点的横坐标;若不存在,请说明理由;
    (4)若抛物线上一动点Q,当时,直接写出Q点坐标________.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
    【详解】
    解: 抛物线y=mx2+4mx+m﹣2(m≠0),
    抛物线的对称轴为: 故①符合题意;


    当时,
    所以抛物线与轴有两个交点,故②不符合题意;
    当时,抛物线的开口向上,如图,

    则关于的对称点为: 而
    故③符合题意;
    当时,抛物线的开口向下,如图,

    同理可得:由
    则或 故④符合题意,
    综上:符合题意的有:①③④
    故选:C
    【点睛】
    本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
    2、D
    【解析】
    【分析】
    把代入即可求出,则,进而可求出代数式的值.
    【详解】
    解:二次函数与轴的一个交点为,
    时,,


    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
    3、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    4、B
    【解析】
    【分析】
    看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
    【详解】
    ∵抛物线与x轴有两个不同的交点,
    ∴﹣4ac>0;
    故①正确;
    ∵抛物线开口向下,与y轴交于正半轴,>0,
    ∴a<0,b>0, c>0,
    ∴abc<0;
    故②正确;
    ∵,
    ∴4a+b=0,
    故③正确;
    x= -2时,y=4a-2b+c,
    根据函数的增减性,得4a-2b+c<0;
    故④错误.
    故选B.
    【点睛】
    本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
    5、C
    【解析】
    【分析】
    抛物线的对称轴为:,根据公式直接计算即可得.
    【详解】
    解:,
    其中:,,,

    故选:C.
    【点睛】
    本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
    6、C
    【解析】
    【分析】
    根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
    【详解】
    解:∵二次函数,当时,x的取值范围是,
    ∴,二次函数开口向下
    解得,对称轴为
    当时,,
    经过原点,

    根据函数图象可知,当,,
    根据对称性可得时,
    二次函数图象经过点,

    不可能是4
    故选C
    【点睛】
    本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
    7、C
    【解析】
    【分析】
    把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
    【详解】
    解:,
    向左平移个单位后的函数解析式为,
    函数图象经过坐标原点,

    解得.
    故选:C.
    【点睛】
    本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
    8、C
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    9、C
    【解析】
    【分析】
    分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
    【详解】
    当a>0时,∵对称轴为x=,
    当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
    ∴4a+2-2=4.
    ∴a=1,
    当a<0时,同理可得
    y有最大值为2; y有最小值为4a+2,
    ∴2-(4a+2)=4,
    ∴a=-1,
    综上,a的值为
    故选:C
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
    10、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】

    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据题目中的函数解析式和二次函数的性质可以求得y的取值范围.
    【详解】
    解:∵y=x2-4x+1=(x-2)2-3,抛物线开口向上,
    ∴当x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,
    ∵-1≤x≤4,2-(-1)=3,4-2=2,
    ∴当x=-1时y取得最大值,当x=2时,y取得最小值,
    当x=-1时,y=6,当x=2时,y=-3,
    ∴y的取值范围是-3≤y≤6,
    故答案为:-3≤y≤6.
    【点睛】
    本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.
    2、y=(x+3)2
    【解析】
    【分析】
    根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    解:由“左加右减”的原则可知,将抛物线y=x2向左平移3个单位所得直线的解析式为:y=(x+3)2.
    故答案是:y=(x+3)2.
    【点睛】
    本题考查了二次函数的图象与几何变换,正确理解平移法则是关键.
    3、75
    【解析】
    【分析】
    根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
    【详解】
    解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,
    ∴OA25= •n=25,A25B25=n,
    ∵B25C25=8C25A25,
    ∴C25(25,),
    ∵点C25在上,
    ∴,
    解得n=75.
    故答案为:75.
    【点睛】
    本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.
    4、x4## x>4或x<-2
    【解析】
    【分析】
    先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
    【详解】
    解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
    ∴5=(-2)2-2×(-2)+b,
    解得:b=-3,
    ∴二次函数解析式y1=x2-2x-3,
    ∴抛物线开口向上,对称轴为x=-=1,
    ∴抛物线过点(4,5),
    ∴符合条件y1>y2的x的范围是x<-2或x>4.
    故答案为:x<-2或x>4.
    【点睛】
    本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
    5、##
    【解析】
    【分析】
    将已知式子化成,分和两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.
    【详解】
    解:由得:,
    ①当时,;
    ②当时,则关于的方程根的判别式大于或等于0,
    即,
    整理得:,
    解方程得:,
    则对于二次函数,当时,的取值范围为,且,
    综上,的取值范围为,
    所以的最大值为3,最小值为,
    所以的最大值与最小值之和为,
    故答案为:.
    【点睛】
    本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.
    三、解答题
    1、 (1)
    (2)
    (3)(1,4)或(2,3)
    【解析】
    【分析】
    (1)根据题意待定系数法求二次函数解析式即可;
    (2)根据二次函数解析式求得点得到坐标,进而求得直线的解析式,设P点坐标为,则Q点坐标为,进而表示出的长,根据二次函数的性质求得最大值即可;
    (3)过点D作BC的平行线交x轴于G,交y轴于E,根据∆COF与∆CDF共高,面积比转化为底边比,求得,根据平行线分线段成比例求得,进而求得的长,即可求得的坐标,根据一次函数的平移可得直线EG解析式为:y= -x+5,联立直线与抛物线解析式,即可求得点的坐标
    (1)
    抛物线经过点,

    解得
    抛物线的解析式为:
    (2)
    抛物线的解析式为:
    令,则


    设直线的解析式为

    解得
    直线BC的解析式为:
    过点P作PQ⊥x轴交BC于点Q,设P点坐标为,

    则Q点坐标为,



    ∴PQ的最大值是.
    (3)
    ∵∆COF与∆CDF共高,面积比转化为底边比,
    OF:DF=S△COF:S△CDF=3:2
    过点D作BC的平行线交x轴于G,交y轴于E,
    根据平行线分线段成比例,
    OF:FD=OC:CE=3:2

    ∵OC=3,
    ∴OE=5,
    ∴E(0,5)
    ∴直线EG解析式为:y= -x+5
    联立方程,得:
    解得:,
    则点D的坐标为(1,4)或(2,3);
    【点睛】
    本题考查了二次函数综合,待定系数法求二次函数解析式,根据二次函数的性质求最值,平行线分线段成比例,掌握以上知识是解题的关键.
    2、 (1)对称轴x=2;交点坐标为(1,0)和(3,0)
    (2)10
    (3)4
    【解析】
    【分析】
    (1)解析式化成顶点式即可求得对称轴,令y=0,得到关于x的方程,解方程即可求得抛物线与x轴的交点坐标;
    (2)构建方程求出a的值,再求出△OPQ的面积即可解决问题;
    (3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,可得t+1≤5且t≥﹣1,由此即可解决问题.
    (1)
    解:∵y=ax2﹣4ax+3a=a(x﹣2)2﹣a,
    ∴对称轴x=2;
    令y=0,则ax2﹣4ax+3a=0,
    解得x=1或3,
    ∴抛物线与x轴的交点坐标为(1,0)和(3,0);
    (2)
    解:∵该二次函数的图象开口向下,且对称轴为直线x=2,
    ∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),
    ∴4a﹣8a+3a=2,
    ∴a=﹣2,
    ∴y=﹣2x2+8x﹣6,
    ∵当1≤x≤2时,y随x的增大而增大,
    ∴当x=1时,y取到在1≤x≤2上的最小值0.
    ∵当2≤x≤4时,y随x的增大而减小,
    ∴当x=4时,y取到在2≤x≤4上的最小值﹣6.
    ∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).
    ∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;
    (3)
    解:∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,
    ∴当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,
    ∴t+1≤5且t≥﹣1,
    ∴﹣1≤t≤4,
    ∴t的最大值为4.
    【点睛】
    本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,函数的最值问题等知识,解题的关键是读懂题意、灵活运用所学知识解决问题.
    3、 (1),顶点坐标为:;
    (2),证明见解析;
    (3)存在点P,,理由见解析.
    【解析】
    【分析】
    (1)根据题意设抛物线解析式为:,将点C代入解得,代入抛物线可得函数解析式;将一般式化为顶点式即可确定顶点坐标;
    (2)结合图象,分别求出的三边长,的三边长,由勾股定理逆定理可得为直角三角形,且两个三角形的三条边对应成比例,即可证明;
    (3)设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,可得,,利用等腰直角三角形的性质可得,,再由勾股定理可得,设,根据直角坐标系中两点之间的距离利用勾股定理可得,同理可得=,利用代入消元法解方程即可确定点F的坐标,然后求出直线AF的直线解析式,联立抛物线解析式求交点坐标即可得.
    (1)
    解:抛物线经过点,,,
    设抛物线解析式为:,
    将点C代入可得:,
    解得:,
    ∴,
    ∴顶点坐标为:;
    (2)
    解:如图所示:

    为直角三角形且三边长分别为:,,,
    的三边长分别为:,
    ,,
    ∴,
    ∴为直角三角形,
    ∵,
    ∴;
    (3)
    解:设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,如(2)中图:
    ∴,,
    ∵,
    ∴,
    ∴为等腰直角三角形,
    ∴,,
    ∴,即
    解得:,
    设,
    ∴,,
    ∴,
    整理得:①,
    =,
    即②,
    将①代入②整理得:,
    解得:,,
    ∴,,
    ∴或(不符合题意舍去),
    ∴,,
    设直线FA解析式为:,将两个点代入可得:

    解得:,
    ∴,
    ∴联立两个函数得:,
    将①代入②得:,
    整理得:,
    解得:,,
    当时,,
    ∴.
    【点睛】
    题目主要考查待定系数法确定函数解析式,相似三角形得判定和性质,中垂线的性质,等腰直角三角形的性质,勾股定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
    4、
    【解析】
    【分析】
    根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.
    【详解】
    ∵抛物线与x轴有交点,
    ∴方程有两个实数根.


    解得.
    【点睛】
    本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
    5、 (1)y=x2-4x+3;
    (2)(2,1);AE⊥BC,;
    (3)存在,M点的横坐标为或;
    (4)Q点的坐标为(,)或(,) .
    【解析】
    【分析】
    (1)求得点C的坐标和点B的坐标,利用待定系数法即可求解;
    (2)连接BC交对称轴于点E,此时AE+CE取得最小值,求得直线BC的解析式,即可求得E点坐标,进一步计算即可求解;
    (3)分类求解,利用tan∠ACB= tan∠BAM,求得G点坐标,利用待定系数法求得直线AG的解析式,联立方程即可求解;
    (4)先求得tan∠ACO=,同(3)的方法即可求解.
    (1)
    解:令x=0,则y=3,
    ∴点C的坐标为(0,3),即OC=1,
    ∵tan∠ABC=1,即,
    ∴OC=OB=1,
    ∴点B的坐标为(3,0),
    把B(3,0)代入y=x2+bx+3得32+3b+3=0,
    解得:b=-4,
    ∴抛物线的解析式为y=x2-4x+3;
    (2)
    解:y=x2-4x+3=(x-2)2-1,
    ∴顶点D的坐标为(2,-1),对称轴为x=2,
    解方程(x-2)2-1=0,得:x1=1,x2=3,
    ∴点A的坐标为(1,0),
    连接BC交对称轴于点E,此时,AE=BE,
    ∴AE+CE=BE+CE=BC,
    ∴AE+CE的最小值为BC,
    设直线BC的解析式为y=kx+3,
    把B(3,0)代入y=kx+3,得:0=3k+3,
    解得:k=-1,
    ∴直线BC的解析式为y=-x+3,
    当x=2时,y=1,
    ∴E点坐标为(2,1),
    ∵AE=,BE=,AB=3-1=2,

    ∴AE2+BE2=AB2,AE=BE,
    ∴△AEB为等腰直角三角形,
    ∴AE与BC的位置关系是:AE⊥BC,
    ∵CE=,
    ∴tan∠ACE=,
    故答案为:(2,1);AE⊥BC,;

    (3)
    解:设对称轴与x轴交于点F,交AM于点G,
    ∵∠ACB=∠BAM,
    ∴tan∠ACB= tan∠BAM,
    由(2)得tan∠ACE,
    ∴tan∠BAM=,
    ∵AF=OF-OA=1,
    ∴GF=,
    ∴G点坐标为(2,),
    同理求得直线AG的解析式为y=x-,
    解方程x-=x2-4x+3,得x1=1,x2=,
    ∴M点的横坐标为;
    当AM在x轴下方时,
    同理求得直线AG1的解析式为y=x+,
    解方程x+=x2-4x+3,得x1=1,x2=,
    ∴M1点的横坐标为;
    综上,存在,M点的横坐标为或;

    (4)
    解:∵OA=1,OC=3,
    ∴tan∠ACO=,
    同(3)得H点坐标为(2,),
    直线AQ的解析式为y=x-,
    解方程x-=x2-4x+3,得x1=1,x2=,
    ∴Q点的坐标为(,);
    当AQ在x轴下方时,
    同理求得直线AQ1的解析式为y=x+,
    解方程x+=x2-4x+3,得x1=1,x2=,
    ∴Q1点的坐标为(,);
    综上,Q点的坐标为(,)或(,).
    ,
    【点睛】
    本题是二次函数综合题,主要考查了待定系数法求函数解析式、解一元二次方程、解直角三角形等,要注意分类求解,避免遗漏.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品达标测试:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品达标测试,共39页。试卷主要包含了已知平面直角坐标系中有点A,抛物线的对称轴是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试课后练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    初中冀教版第30章 二次函数综合与测试同步测试题:

    这是一份初中冀教版第30章 二次函数综合与测试同步测试题,共33页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map