搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版九年级数学下册第三十章二次函数达标测试试题(含解析)

    精品试题冀教版九年级数学下册第三十章二次函数达标测试试题(含解析)第1页
    精品试题冀教版九年级数学下册第三十章二次函数达标测试试题(含解析)第2页
    精品试题冀教版九年级数学下册第三十章二次函数达标测试试题(含解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第30章 二次函数综合与测试课后复习题

    展开

    这是一份数学九年级下册第30章 二次函数综合与测试课后复习题,共35页。试卷主要包含了二次函数的最大值是,已知点,抛物线的对称轴是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
    A.秒 B.秒 C.秒 D.1秒
    2、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
    x

    -3
    -2
    -1
    0
    1

    y

    -6
    0
    4
    6
    6

    给出下列说法:
    ①抛物线与y轴的交点为(0,6);
    ②抛物线的对称轴在y轴的右侧;
    ③抛物线的开口向下;
    ④抛物线与x轴有且只有1个公共点.
    以上说法正确是( )
    A.① B.①② C.①②③ D.①②③④
    3、下列函数中,随的增大而减小的是( )
    A. B.
    C. D.
    4、二次函数的最大值是( )
    A. B. C.1 D.2
    5、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )

    A.①④ B.③⑤ C.②⑤ D.③④
    6、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
    A. B. C.或 D.
    7、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )

    A. B. C. D.
    8、抛物线的对称轴是( )
    A.直线 B.直线 C.直线 D.直线
    9、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图(  )
    A. B.
    C. D.
    10、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为(  )

    A.②③ B.②④ C.①②③ D.②③④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.

    2、某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护服的产量y(万件)与x之间的函数表达式为______.
    3、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.

    4、在平面直角坐标系中,设点P是抛物线的顶点,则点P到直线的距离的最大值为________.
    5、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.
    (1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;
    (2)若每日销售利润达到900元,售价为多少元?
    (3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?
    2、在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).

    (1)求c的值,并用含a的代数式表示b;
    (2)当a=时.
    ①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;
    ②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.
    3、如图,隧道的截面由抛物线和长方形构成.长方形的长为,宽为,抛物线的最高点离路面的距离为.

    (1)求抛物线的函数表达式;
    (2)一大型货车装载设备后高为,宽为.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?
    4、如图,△ADB与△BCD均为等边三角形,延长AD到E,使∠AEC=90°,AD=5,动点M从点B出发,沿BD方向运动,移动速度为1个单位/秒,同时,点N由点D向点C运动,移动速度为2个单位/秒,其中一个到终点,都停止运动,连接AM,CM,MN,NE,设运动时间为t(0≤t≤2.5)

    (1)t为何值时,MN∥BC;
    (2)连接BN,t为何值时,BNE三点共线;
    (3)设四边形AMNE的面积为S,求S与t的函数关系式;
    (4)是否存在某一时刻t,使N在∠CMD的角平分线上,若存在,求出t近似值;若不存在,说明理由.
    5、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.
    (1)求这条抛物线的解析式.
    (2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?


    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
    【详解】
    解:由题意得,
    当h=3时,,
    解得,
    ∴球不低于3米的持续时间是1-0.6=0.4(秒),
    故选:A.
    【点睛】
    此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
    2、C
    【解析】
    【分析】
    根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
    【详解】
    解:根据图表,抛物线与y轴交于(0,6),故①正确;
    ∵抛物线经过点(0,6)和(1,6),
    ∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
    当x2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    4、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    5、D
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
    ②由抛物线的开口方向向下可推出a<0;
    因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
    ③由图可知函数经过(-1,0),∴当,,故③正确;
    ④对称轴为x=,∴,故④正确;
    ⑤当y=2时,,故⑤错误;
    ∴正确的是③④
    故选:D
    【点睛】
    二次函数y=ax2+bx+c系数符号的确定:
    (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
    (2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
    (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
    (4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
    6、A
    【解析】
    【分析】
    先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
    【详解】
    解:∵当x1=1、x2=3时,y1=y2,
    ∴点A与点B为抛物线上的对称点,
    ∴,
    ∴b=-4;
    ∵对于任意实数x1、x2都有y1+y2≥2,
    ∴二次函数y=x2-4x+n的最小值大于或等于1,
    即,
    ∴c≥5.
    故选:A.
    【点睛】
    本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
    7、B
    【解析】
    【分析】
    直接利用图象设出抛物线解析式,进而得出答案.
    【详解】
    ∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
    ∴设抛物线解析式为y=ax2,点B(45,-78),
    ∴-78=452a,
    解得:a=,
    ∴此抛物线钢拱的函数表达式为,
    故选:B.
    【点睛】
    本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
    8、C
    【解析】
    【分析】
    抛物线的对称轴为:,根据公式直接计算即可得.
    【详解】
    解:,
    其中:,,,

    故选:C.
    【点睛】
    本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
    9、B
    【解析】
    【分析】
    分别利用函数解析式分析图象得出答案.
    【详解】
    解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
    B、两函数图象符合题意;
    C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
    D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
    10、D
    【解析】
    【分析】
    根据二次函数的图象及性质即可判断.
    【详解】
    解:由函数图象可知,抛物线开口向上,
    ∴a>0,
    ∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
    ∴抛物线与x轴另一个交点坐标为(3,0),
    ∴当x>1时,y随x的增大而增大,故①错误;
    ∵﹣=1,
    ∴b=﹣2a,
    ∴2a+b=0,故②正确;
    当x=2时,y=4a+2b+c<0,故③正确;
    当x=﹣1时,y=a﹣b+c=3a+c=0,
    ∴c=﹣3a,
    ∴﹣a>c,
    ∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
    ∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
    即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
    正确的有②③④,
    故选:D.
    【点睛】
    本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
    二、填空题
    1、(,)
    【解析】
    【分析】
    设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
    【详解】
    解:∵点A是抛物线图像上一点
    故设A(x,x2),
    ∵将点A向下平移2个单位到点B,
    故B(x,x2-2)
    ∵把A绕点B顺时针旋转120°得到点C,如图,

    过点B作BD⊥AB于B,过点C作CD⊥BD于D,
    AB=BC=2,∠ABC=120°,∠ABD=90°,
    ∴∠DBC=30°
    故CD=,BD=,
    故C(x+,x2-3),
    把C(x+,x2-3)代入,
    ∴x2-3=(x+)2,
    解得x=-
    ∴A(-,3)
    故答案为:(,3).
    【点睛】
    此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
    2、
    【解析】
    【分析】
    某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x,则九月份的产量为万件,十月份医用防护服的产量为万件,从而可得答案.
    【详解】
    解:十月份医用防护服的产量y(万件)与x之间的函数表达式为

    故答案为:
    【点睛】
    本题考查的是列二次函数关系式,掌握“两次变化后的量=原来量(1+增长率)2”是解本题的关键.
    3、
    【解析】
    【分析】
    利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.
    【详解】
    解:作QM⊥y轴于点M,Q′N⊥y轴于N,

    ∵∠PMQ=∠PNQ′=∠QPQ′=90°,
    ∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,
    ∴∠QPM=∠PQ′N,
    在△PQM和△Q′PN中,

    ∴△PQM≌△Q′PN(AAS),
    ∴PN=QM,Q′N=PM,
    设Q(m,m+3),
    ∴PM=|m+2|,QM=|m|,
    ∴ON=|1-m|,
    ∴Q′(m+2,1−m),
    ∴OQ′2=(m+2)2+(1−m)2=m2+5,
    当m=0时,OQ′2有最小值为5,
    ∴OQ′的最小值为,
    故答案为:.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.
    4、5
    【解析】
    【分析】
    根据抛物线解析式求出点P坐标,由直线解析式可知直线恒过点B(0,-3),当PB与直线垂直时,点P到直线的距离最大,根据两点间距离公式可出最大距离.
    【详解】
    解:∵
    ∴P(3,1)
    又直线恒过点B(0,-3),如图,

    ∴当PB与直线垂直时,点P到直线的距离最大,
    此时,
    ∴点P到直线的距离的最大值为5
    故答案为:5.
    【点睛】
    本题主要考查了二次函数的性质,以及点到直线间的距离,熟练掌握二次函数的性质是解答本题的关键.
    5、##
    【解析】
    【分析】
    过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
    【详解】
    解:如图,过点作,交于点,

    ∠C=90°.直角边AC=3m、BC=4m,


    设,则
    四边形是矩形





    整理得
    设矩形的面积为,则
    当取得最大值时,,此时
    故答案为:
    【点睛】
    本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
    三、解答题
    1、 (1)w=-3x2+360x-9600;
    (2)若每日销售利润达到900元,售价为50元;
    (3)当销售价为55元时,可以获得最大利润,为1125元.
    【解析】
    【分析】
    (1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;
    (2)根据(1)的关系式列出一元二次方程即可;
    (3)根据题中所给的自变量的取值得到二次的最值问题即可.
    (1)
    解:w=(x-40)[105-3(x-45)]
    =(x-40)(-3x+240)
    =-3x2+360x-9600,
    答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;
    (2)
    解:由题意得,w=-3x2+360x-9600=900,
    解得:x1=50,x2=70>55(舍),
    答:若每日销售利润达到900元,售价为50元;
    (3)
    解:w=-3x2+360x-9600=-3(x-60)2+1200,
    ∵a=-3<0,
    ∴抛物线开口向下.
    又∵对称轴为x=60,
    ∴当x<60,w随x的增大而增大,
    由于50≤x≤55,
    ∴当x=55时,w的最大值为1125元.
    ∴当销售价为55元时,可以获得最大利润,为1125元.
    【点睛】
    本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.
    2、 (1)c=6;b=2a+4
    (2)①最小值为−,最大值为20;②D(−3,−).
    【解析】
    【分析】
    (1)分别把 A(0,6)和B(-2,-2)代入解析式,可得c和b的值.
    (2)①当a=时,此函数表达式为y=x2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(x,x2+x+6)则F(x,x+6),得FD的值,设△FDM的周长为l,则l=DF+DM+MF=,当FD最大时,周长最大,根据二次函数的性质可得最大值.
    (1)
    把(0,6)代入y=ax2+bx+c,
    得c=6.
    把(-2,-2)代入y=ax2+bx+6,
    得4a-2b+6=-2,
    ∴b=2a+4.
    (2)
    ①当a=时,
    ∴,且c=6
    ∴函数表达式为y=x2+x+6=,图象开口向上.
    ∴顶点坐标为,

    ∵-4≤x≤2,
    ∴当x=−时,y的最小值为−.
    观察图象结合增减性,当x=2时,y有最大值,
    把x=2代入y=x2+x+6,
    y的最大值为20.
    ②∵y=x2+x+6,
    令y=0,则x=-6或x=−,
    ∵点C在左侧,
    ∴C(-6,0)
    设直线AC的解析式为y=kx+m,
    把A(0,6),C(-6,0)代入y=kx+m,得
    m=6-6k+m=0
    解得k=1,m=6,
    ∴y=x+6
    设D(x,x2+x+6)则F(x,x+6)
    ∴FD=x+6−(x2+x+6)=−x2−x,
    ∵OA=OC=6,∠AOC=90°,
    ∴∠COA=90°,
    ∵DF∥AO,
    ∴∠DFM=∠CAO=45°,
    DM=FM=FD,
    设△FDM的周长为l,
    则l=DF+DM+MF=
    当FD最大时,周长最大,
    又∵,
    又∵−<0且-6<x<0,
    ∴x=-3时,FD有最大值,即此刻△FDM周长最大.
    把x=-3代入y=x2+x+6,
    得y=−,
    ∴D(−3,−).
    【点睛】
    本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.
    3、 (1)
    (2)这辆货车能安全通过,理由见解析
    【解析】
    【分析】
    (1)根据题意得: , ,抛物线的顶点坐标为点 ,从而得到点 ,设抛物线的函数表达式为 ,把点代入,即可求解;
    (2)根据题意得:当 时, ,即可求解.
    (1)
    解:∴ ,
    设抛物线的函数表达式为 ,
    ∴ ,解得: ,
    ∴抛物线的函数表达式为;
    (2)
    解:这辆货车能安全通过,理由如下:
    根据题意得:当 时,

    ∴这辆货车能安全通过.
    【点睛】
    本题主要考查了二次函数的实际应用,明确题意,准确得到函数关系式是解题的关键.
    4、 (1)当秒;MN∥BC;
    (2)t=时,B、N、E三点共线;
    (3)S=(0≤t≤2.5);
    (4)存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
    【解析】
    【分析】
    (1)根据MN∥BC;证明△MDN为等边三角形,得出DM=DN,即5-t=2t,解方程即可;
    (2)根据∠ADE为平角,求出∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,得出DE=,CE=,根据B、N、E三点共线;得出对顶角性质∠BNC=∠END,再证△BCN∽△EDN,得出即,求出DN即可;
    (3)过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,先证BD为∠ADC的平分线,得出MG=MH,再证△MGD∽△BFD,,,求出,分别求出S△AMD=,S△MDN=S△DEN=,再根据S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5)即可;
    (4)过点M作MK⊥BC于K,根据等边三角形性质可得∠KBM=60°,可求∠KMB=90°-60°=30°,利用30°直角三角形性质得出BK=,利用勾股定理得出MK=MC,根据角平分线定理使N在∠CMD的角平分线上,得出即,整理得:,化为两函数的交点,用描点法画函数图像,列表连线得出量函数图像Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,t≈1.148时,两函数值相等即可.
    (1)
    解:∵△ADB与△BCD均为等边三角形,AD=5,
    ∴BD=DC=AD=5,
    ∴BM=t,DN=2t,
    ∵MN∥BC;
    ∴∠NMD=∠DBC=60°=∠MDN,
    ∴△MDN为等边三角形,
    ∴DM=DN,即5-t=2t,
    解得秒;
    ∴当秒;MN∥BC;
    (2)
    解:∵∠ADE为平角,
    ∴∠CDE=180°-∠ADB-∠BDC=180°-60°-60°=60°,
    ∵∠CEA=90°,
    ∴∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,
    ∴DE=,CE=,
    ∵B、N、E三点共线;
    ∴∠BNC=∠END,
    ∵∠BCD=∠CDE=60°,
    ∴BC∥DE,
    ∴△BCN∽△EDN,
    ∴即,
    解得DN=,
    ∴2t=,
    解得t=,
    ∴t=时,B、N、E三点共线;

    (3)
    解:过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,
    ∵∠BDA=∠BDC=60°,
    ∴BD为∠ADC的平分线,
    ∵MG⊥AE于G,MH⊥DC于H,
    ∴MG=MH,
    ∵BF⊥AE,MG⊥AE,
    ∴BF∥MG,
    ∴△MGD∽△BFD,
    ∴,
    ∵△ABD为等边三角形,BF⊥AD,
    ∴AF=DF=2.5,
    ∴BF=,
    ∵MB=t,
    ∴MD=5-t,
    ∴,
    解得:,
    ∴MH=,
    ∴S△AMD=,
    S△MDN=,
    ∵NI⊥DE,∠CED=90°,
    ∴NI∥CE,
    ∴△DNI∽△DCE,
    ∴即,
    ∴解得NI=,
    ∴S△DEN=,
    ∴S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5);

    (4)
    过点M作MK⊥BC于K,,过点C作CS∥MN,交DB延长线于S,

    ∵∠KBM=60°,
    ∴∠KMB=90°-60°=30°,
    ∴BK=,MK=,
    ∴MC,
    ∵使N在∠CMD的角平分线上,
    ∴∠CMN=∠DMN,
    ∵MN∥CS,
    ∴∠S=∠DMN,∠SCM=∠CMN,
    ∴∠S=∠SCM,
    ∴MS=MC,
    ∵MN∥CS,

    ∴即,
    整理得:,
    两函数的交点,
    用描点法画函数图像,
    列表
    t
    0

    1
    1.145
    Y=8t3
    0
    4
    8
    12.009
    t
    1
    1.15
    1.24

    Y=5(3t-5)2
    20
    12.0125
    8.19
    0

    Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,
    ∴t≈1.148时,两函数值相等,

    ∴是存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
    【点睛】
    本题考查等边三角形性质,平行线判定,三点共线,对顶角,三角形相似,三角形面积函数,勾股定理,角平分线定理,列表法函数式图形,利用图像求方程的解是解题关键.
    5、 (1)
    (2)一艘宽为4米,高出水面3米的货船,能从桥下通过,理由见解析.
    【解析】
    【分析】
    (1)根据抛物线经过原点,可设抛物线为再把把代入抛物线的解析式,利用待定系数法求解抛物线的解析式即可;
    (2)把代入抛物线的解析式求解函数值,再与3米进行比较,即可得到答案.
    (1)
    解:根据题意抛物线经过了原点,设抛物线为:
    把代入抛物线的解析式得:

    解得:
    所以抛物线为:
    (2)
    解:因为一艘宽为4米,高出水面3米的货船行驶时航线在正中间,
    所以当时,


    所以一艘宽为4米,高出水面3米的货船,能从桥下通过.
    【点睛】
    本题考查的是二次函数的实际应用,熟练的把实际生活中的问题化为数学问题,建立数学模型是解本题的关键.

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试达标测试:

    这是一份冀教版九年级下册第30章 二次函数综合与测试达标测试,共35页。试卷主要包含了二次函数y=ax2+bx+c,一次函数与二次函数的图象交点,二次函数y=a+bx+c,若点A等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试课堂检测:

    这是一份冀教版九年级下册第30章 二次函数综合与测试课堂检测,共23页。试卷主要包含了抛物线的顶点为,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试同步训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试同步训练题,共22页。试卷主要包含了二次函数y=a+bx+c,若点A等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map