开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版九年级数学下册第三十章二次函数同步练习试题(无超纲)

    精品试卷冀教版九年级数学下册第三十章二次函数同步练习试题(无超纲)第1页
    精品试卷冀教版九年级数学下册第三十章二次函数同步练习试题(无超纲)第2页
    精品试卷冀教版九年级数学下册第三十章二次函数同步练习试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共30页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数同步练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、抛物线,,的图象开口最大的是( )
    A. B. C. D.无法确定
    2、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
    A. B. C. D.
    3、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )

    A.2个 B.3个 C.4个 D.5个
    4、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )

    A. B. C. D.
    5、已知二次函数的图象经过,,则b的值为( )
    A.2 B. C.4 D.
    6、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )

    A. B.
    C. D.
    7、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
    A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
    C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
    8、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )

    A.① B.② C.③ D.②③
    9、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
    A.-2 B.-1 C.4 D.7
    10、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若抛物线与轴交于原点,则的值为 __.
    2、已知某函数的图象经过,两点,下面有四个推断:
    ①若此函数的图象为直线,则此函数的图象与直线平行;
    ②若此函数的图象为双曲线,则也在此函数的图象上;
    ③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
    ④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
    所有合理推断的序号是______.
    3、如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c过点(﹣1,﹣4),则下列结论:①对于任意的x=m,均有am2+bm+c≥﹣6;②ac>0;③若点(),(,y2)在抛物线上,则y1>y2;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1;⑤b﹣6a=0;其中正确的有_______(填序号).

    4、二次函数y=ax2+bx+c的部分对应值列表如下:
    x

    ﹣3
    0
    1
    3
    5

    y

    7
    ﹣8
    ﹣9
    ﹣5
    7

    则一元二次方程a(2x+1)2+b(2x+1)+c=﹣5的解为 _____.
    5、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,AD≤MN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.

    (1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;
    (2)若a=150.求矩形隔离区ABCD面积的最大值.
    2、在平面直角坐标系xOy中,已知抛物线:y=ax2-2ax+4(a>0).

    (1)抛物线的对称轴为x=  ;抛物线与y轴的交点坐标为  ;
    (2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;
    (3)若A(m-1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y1>y3>y2,结合图象,求m的取值范围.
    3、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).

    (1)请求出y(万件)与x(元/件)之间的函数关系式;
    ①求出当4≤x≤8时的函数关系式;
    ②求出当8<x≤28时的函数关系式.
    (2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;
    (3)求出年利润的最大值.
    4、已知一抛物线的顶点为(2,4),图象过点(1,3).
    (1)求抛物线的解析式;
    (2)动点P(x,5)能否在抛物线上?请说明理由;
    (3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.
    5、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
    (1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
    (2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
    【详解】
    解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
    ∵||<|1|<|-3|,
    ∴抛物线开口最大.
    故选A.
    【点睛】
    本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
    2、C
    【解析】
    【分析】
    根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
    【详解】
    解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
    ∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
    平移后的抛物线经过三点、、,


    故选C
    【点睛】
    本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
    3、C
    【解析】
    【分析】
    根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
    【详解】
    ∵抛物线开口向上,
    ∴a>0,
    ∵抛物线与y轴的交点在y轴的负半轴上,
    ∴c<0,
    ∵抛物线的对称轴在y轴的右边,
    ∴b<0,
    ∴,
    故①正确;
    ∵二次函数的图像与x轴交于点,
    ∴a-b+c=0,
    根据对称轴的左侧,y随x的增大而减小,
    当x=-2时,y>0即,
    故②正确;
    ∵,

    ∴b= -2a,
    ∴3a+c=0,
    ∴2a+c=2a-3a= -a<0,
    故③正确;
    根据题意,得,
    ∴,
    解得,
    故④错误;
    ∵=0,
    ∴,
    ∴y=向上平移1个单位,得y=+1,
    ∴为方程的两个根,且且.
    故⑤正确;
    故选C.
    【点睛】
    本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
    4、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴求出与的关系.
    【详解】
    解:A、由抛物线的开口向上知,
    对称轴位于轴的右侧,

    抛物线与轴交于负半轴,


    故选项正确,不符合题意;
    B、对称轴为直线,得,即,故选项正确,不符合题意;
    C、如图,当时,,,故选项正确,不符合题意;
    D、当时,,
    ,即,故选项错误,符合题意;
    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.
    5、C
    【解析】
    【分析】
    由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
    【详解】
    解: 二次函数的图象经过,,
    二次函数图象的对称轴为:
    解得:
    故选C
    【点睛】
    本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
    6、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,

    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,

    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    7、A
    【解析】
    【分析】
    根据二次函数的平移性质得出a不发生变化,即可判断a=1.
    【详解】
    解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
    ∴a=1.
    故选:A.
    【点睛】
    此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
    8、B
    【解析】
    【分析】
    把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
    【详解】
    解:∵点M(a,b)在抛物线y=x(2-x)上,

    当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
    ∵△=4-4×(-3)>0,
    ∴有两个不相等的值,
    ∴点M的个数为2,故①错误;
    当b=1时,1=a(2-a),整理得a2-2a+1=0,
    ∵△=4-4×1=0,
    ∴a有两个相同的值,
    ∴点M的个数为1,故②正确;
    当b=3时,3=a(2-a),整理得a2-2a+3=0,
    ∵△=4-4×3<0,
    ∴点M的个数为0,故③错误;
    故选:B.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
    9、C
    【解析】
    【分析】
    根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
    【详解】
    解:∵二次函数,当时,x的取值范围是,
    ∴,二次函数开口向下
    解得,对称轴为
    当时,,
    经过原点,

    根据函数图象可知,当,,
    根据对称性可得时,
    二次函数图象经过点,

    不可能是4
    故选C
    【点睛】
    本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
    10、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    二、填空题
    1、-3
    【解析】
    【分析】
    根据函数图象经过原点时,,,代入即可求出的值.
    【详解】
    解:抛物线与轴交于原点,
    当时,,


    故答案为:.
    【点睛】
    本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
    2、①②④
    【解析】
    【分析】
    分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
    【详解】
    解:①过,两点的直线的关系式为y=kx+b,则

    解得,
    所以直线的关系式为y=x-1,
    直线y=x-1与直线y=x平行,
    因此①正确;
    ②过,两点的双曲线的关系式为,则,
    所以双曲线的关系式为
    当时,
    ∴也在此函数的图象上,
    故②正确;
    ③若过,两点的抛物线的关系式为y=ax2+bx+c,
    当它经过原点时,则有
    解得,
    对称轴x=-,
    ∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
    当->时,抛物线与y轴的交点在负半轴,
    因此③说法不正确;
    ④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
    所以对称轴x=-=-=-,
    因此函数图象对称轴在直线x=左侧,
    故④正确,
    综上所述,正确的有①②④,
    故答案为:①②④.
    【点睛】
    本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
    3、①④⑤
    【解析】
    【分析】
    根据二次函数的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系综合进行判断即可.
    【详解】
    解:∵抛物线y=ax2+bx+c的顶点为(﹣3,﹣6),
    ∴当x=﹣3时,y最小值=﹣6,
    ∴对于任意的x=m,其函数值y=am2+bm+c≥﹣6,
    因此①正确;
    ∵开口向上,
    ∴a>0,
    ∵抛物线与y轴交于负半轴,
    ∴c<0,
    ∴ac<0,
    因此②不正确;
    ∵点(),(,y2)在对称轴右侧的抛物线上,根据在对称轴右侧,y随x的增大而增大,
    ∴y1<y2,
    因此③不正确;
    ∵抛物线y=ax2+bx+c过点(﹣1,﹣4),由对称轴为x=﹣3,根据对称性可知,抛物线y=ax2+bx+c还过点(﹣5,﹣4),
    ∴当y=﹣4时,即方程ax2+bx+c=﹣4有两个不相等的实数根﹣1和﹣5,
    因此④正确;
    ∵对称轴x=﹣=﹣3,
    ∴b﹣6a=0,
    因此⑤正确;
    综上所述,正确的结论有①④⑤,
    【点睛】
    本题考查了二次函数的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系综合,掌握二次函数的图象与性质是解题的关键.
    4、,
    【解析】
    【分析】
    从表中找到三对数值,将三对数值分别代入y=ax2+bx+c组成方程组,求出a、b、c的值,然后再运用因式分解法求解方程即可得到结论.
    【详解】
    解:将(-3,7),(0,-8),(1,-9)代入y=ax2+bx+c得,

    整理得,
    ②×3+①,得

    把代入②得,


    ∴一元二次方程a(2x+1)2+b(2x+1)+c=﹣5可变形为:
    即:

    ∴,或
    解得,,
    故答案为:,
    【点睛】
    本题考查了待定系数法求函数解析式和一元二次方程的解法,从图表中找到相关的量是解题的关键.
    5、
    【解析】
    【分析】
    将点代入求出抛物线的解析式,再求出对称轴为直线,开口向上,自变量离对称轴越远,因变量越大即可求解.
    【详解】
    解:将代入中得到:,
    解得,
    ∴抛物线的对称轴为直线,且开口向上,
    根据“自变量离对称轴越远,其对应的因变量越大”可知,
    当时,对应的最大为:,
    当时,对应的最小为:,
    故n的取值范围为:,
    故答案为:.
    【点睛】
    本题考查二次函数的图像及性质,点在抛物线上,将点的坐标代入即可求解.
    三、解答题
    1、 (1)AD=20米;
    (2)当x=100时,S最大=5000米2.
    【解析】
    【分析】
    (1)设AD=x,AB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;
    (2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=x100-12x然后配方为S即可.
    (1)
    解:设AD=x,AB=(200-x)÷2=100-,
    ∴根据题意得:,
    整理得,
    解得:,
    ∵a=30,
    ∴AD=20米;
    (2)
    解:矩形隔离区ABCD面积用S表示,
    则S=,
    ∵a=150>100,
    ∴当x=100时,S最大=5000米2.
    【点睛】
    本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.
    2、 (1)1,(0,4)
    (2)顶点坐标为(1,0),y=4x2-8x+4
    (3)
    【解析】
    【分析】
    (1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;
    (2)根据二次函数与x轴交点公式,以及待定系数法求解析式;
    (3)先求对称点坐标根据函数的增减性解决本题.
    (1)
    解:,
    当x=0时,y=ax2-2ax+4=4,
    所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),
    故答案为:1,(0,4).
    (2)
    解:∵抛物线的顶点恰好在x轴上,
    ∴抛物线的顶点坐标为(1,0),
    把(1,0)代入y=ax2-2ax+4得:0=a×12-2a×1+4,
    解得:a=4,
    ∴抛物线的解析式为y=4x2-8x+4.
    (3)
    解:A(m-1,y1)关于对称轴x=1的对称点为A′(3-m,y1),
    B(m,y2)关于对称轴x=1的对称点为B′(2-m,y2),
    若要y1>y3>y2,则3-m>m+2>2-m,解得:.
    【点睛】
    本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键.
    3、 (1)①y=;②y=-x+28
    (2)w=160-640x(4≤x≤8)-(x-16)2+114(8

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共31页。

    冀教版九年级下册第30章 二次函数综合与测试习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试习题,共33页。试卷主要包含了二次函数的最大值是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试练习题,共33页。试卷主要包含了同一直角坐标系中,函数和,若点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map