初中数学第30章 二次函数综合与测试课后练习题
展开
这是一份初中数学第30章 二次函数综合与测试课后练习题,共26页。试卷主要包含了若二次函数y=ax2+bx+c,若二次函数y=a,下列函数中,二次函数是,抛物线的对称轴是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数y=ax2+bx+c的图象如图所示,则( )A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>02、二次函数的图象如图所示,则下列结论正确的是( )A.,, B.,, C.,, D.,,3、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )A.x=-3 B.x=-1 C.x=2 D.x=34、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )A.4米 B.10米 C.4米 D.12米5、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )A.y≤3 B.y≤6 C.y≥-3 D.y≥66、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>07、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣28、下列函数中,二次函数是( )A.y=﹣3x+5 B.y=x(4x﹣3)C.y=2(x+4)2﹣2x2 D.y=9、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线10、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数的图像如图所示,对称轴为直线,根据图中信息可求得该二次函数的解析式为______.2、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.3、已知抛物线与轴交于A、B两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,P为AG的中点,则DP的最大值为_________. 4、已知抛物线,将其图象先向右平移1个单位长度,再向上平移2个单位长度,则得到的抛物线解析式为________.5、如果二次函数的图像上有两点(2,y1)和(4,y2),那么y1________y2.(填“>”、“=”或“<”)三、解答题(5小题,每小题10分,共计50分)1、如图,一名垒球运动员进行投球训练,站在点O开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.(1)求抛物线的函数关系式;(2)求点O到训练墙AB的距离OA的长度.2、某运动员在推铅球时,铅球经过的路线是抛物线的一部分(如图),落地点B的坐标是(10,0),已知抛物线的函数解析式为y=﹣+c.(1)求c的值;(2)计算铅球距离地面的最大高度.3、已知直线y1=kx+1(k>0)与抛物线y2=x2.(1)当﹣4≤x≤3时,函数y1与y2的最大值相等,求k的值;(2)如图①,直线y1=kx+1与抛物线y2=x2交于A,B两点,与y轴交于F点,点C与点F关于原点对称,求证:S△ACF:S△BCF=AC:BC;(3)将抛物线y2=x2先向上平移1个单位,再沿直线y1=kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1=kx+1分别交x轴,y轴于E,F两点,交新抛物线于M,N两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究t与k的关系.4、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;(2)若每日销售利润达到900元,售价为多少元?(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?5、如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;(3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标. -参考答案-一、单选题1、B【解析】【分析】根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.【详解】解:∵抛物线的开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∵抛物线与x轴有一个交点,∴Δ=0,故选:B.【点睛】本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.2、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.【详解】解:抛物线开口向上,,对称轴在轴右侧,与异号,,抛物线与轴交于正半轴,,故选:.【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,①二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于.3、C【解析】【分析】一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.【详解】解:一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性,函数的对称轴为直线,故选:C.【点睛】本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.4、B【解析】【分析】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.【详解】解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O点到水面AB的距离为4米,∴A、B点的纵坐标为﹣4,∵水面AB宽为20米,∴A(﹣10,﹣4),B(10,﹣4),将A代入y=ax2,﹣4=100a,∴a=﹣,∴y=﹣x2,∵水位上升3米就达到警戒水位CD,∴C点的纵坐标为﹣1,∴﹣1=﹣x2,∴x=±5,∴CD=10,故选:B.【点睛】本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.5、C【解析】【分析】根据图像经过三点求出函数表达式,再根据最值的求法求出结果.【详解】解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),∴,解得:,∴函数表达式为y=x2-2x-2,开口向上,∴函数的最小值为=,即y≥-3,故选C.【点睛】本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.6、D【解析】【分析】由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.【详解】解:A、抛物线开口向下,且与轴正半轴相交,,,,结论A错误,不符合题意;B、抛物线顶点坐标为,,,,即,结论B错误,不符合题意;C、抛物线顶点坐标为,,,,结论C错误,不符合题意;D、,,,结论D正确,符合题意.故选:D.【点睛】本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.7、A【解析】【分析】根据二次函数的平移性质得出a不发生变化,即可判断a=1.【详解】解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,∴a=1.故选:A.【点睛】此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.8、B【解析】【分析】根据二次函数的定义逐个判断即可.【详解】解:A.函数是一次函数,不是二次函数,故本选项不符合题意;B.是二次函数,故本选项符合题意;C.是一次函数,不是二次函数,故本选项不符合题意;D.不是二次函数,故本选项不符合题意;故选:B.【点睛】本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.9、B【解析】【分析】由抛物线解析式的顶点式即可求得抛物线的对称轴.【详解】抛物线的对称轴是直线,故选:B.【点睛】本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.10、D【解析】【分析】由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.【详解】解:由已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0), 所以可设交点式y=(x-m)(x-n), 分别代入,, ∴ ∵0<m<n<3, ∴0<≤4 ,0<≤4 , ∵m<n, ∴ab不能取16 , ∴0<ab<16 ,故选D【点睛】本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.二、填空题1、y=-x2-2x+3【解析】【分析】根据图象与x、y轴的交点坐标和对称轴,利用待定系数法求二次函数的解析式即可.【详解】解:设该二次函数的解析式为y=ax2+bx+c(a≠0),由图象知:当x=1时,y=0,当x=0时,y=3,又对称轴为直线x=-1,则,解得:,∴该二次函数的解析式为y=-x2-2x+3,故答案为:y=-x2-2x+3.【点睛】本题考查二次函数的图象与性质、待定系数法求二次函数的解析式,熟练掌握待定系数法求二次函数的解析式是解答的关键.2、【解析】【分析】首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.【详解】解:开口向下,中,与轴的交点纵坐标为3,,抛物线的解析式可以为:(答案不唯一).故答案为:(答案不唯一).【点睛】本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.3、【解析】【分析】如图,连接BG.利用三角形的中位线定理证明DP=BG,求出BG的最大值,即可解决问题.【详解】解:如图,连接BG.∵AP=PG,AD=DB,∴DP=BG,∴当BG的值最大时,DP的值最大,∵,∴C(5,),B(9,0),∴BC==,当点G在BC的延长线上时,BG的值最大,最大值=+,∴DP的最大值为,故答案为:.【点睛】本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.4、【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:∵抛物线的顶点坐标为(0,2),其图象先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线解析式为即故答案为:【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.5、【解析】【分析】将题目所给两个x代入函数即可得出两个y,再比较大小.【详解】=2时:时:∴故答案为:<【点睛】本题考查函数性质,掌握比较方法是关键.三、解答题1、 (1)抛物线的关系式为y=-0.01(x-20)2+6;(2)点O到训练墙AB的距离OA的长度为(20+10)米.【解析】【分析】(1)根据抛物线的顶点设关系式为y=a(x-20)2+6,再根据点C的坐标可得关系式;(2)把y=3代入可得答案.(1)解:由题意得,顶点E(20,6)和C(0,2),设抛物线的关系式为y=a(x-20)2+6,∴2=a(0-20)2+6,解得a=-0.01,∴抛物线的关系式为y=-0.01(x-20)2+6;(2)(2)当y=3时,3=-0.01(x-20)2+6,解得x1=20+10,x2=20-10(舍去),答:点O到训练墙AB的距离OA的长度为(20+10)米.【点睛】本题考查了二次函数的实际应用,利用待定系数法得到抛物线的关系式是解题关键.2、 (1);(2)铅球距离地面的最大高度为【解析】【分析】(1)把(10,0)代入函数解析式中,即可求得c的值;(2)直接利用对称轴的值,代入函数关系式进而得出答案.(1)把(10,0)代入函数解析式中得:解得:(2)当x=﹣时,y最大=所以铅球距离地面的最大高度为3m.【点睛】本题考查了二次函数的图象与性质,掌握二次函数的图象与性质是关键,属于基础题.3、 (1)(2)证明见解析(3)【解析】【分析】(1)根据函数图象的性质可知,当时,, ,,有,求解即可;(2)如图,分别过点作交点分别为,设两点横坐标分别为,由题意知:,, ,,;有,,,,故可证;(3)平移后的二次函数解析式为,与y轴的交点坐标为,可知,有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.(1)解:∵,∴根据函数图象的性质可知,当时,, ∵∴解得.(2)证明:如图,分别过点作交点分别为∴设两点横坐标分别为,由题意知:∴, ∵∴∵,∴∴∴.(3)解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为,∵∴∴有相同的纵坐标∴解得故可知点横纵标∵在点一次函数与二次函数相交,有相同的纵坐标∴解得.【点睛】本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解.4、 (1)w=-3x2+360x-9600;(2)若每日销售利润达到900元,售价为50元;(3)当销售价为55元时,可以获得最大利润,为1125元.【解析】【分析】(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;(2)根据(1)的关系式列出一元二次方程即可;(3)根据题中所给的自变量的取值得到二次的最值问题即可.(1)解:w=(x-40)[105-3(x-45)]=(x-40)(-3x+240)=-3x2+360x-9600,答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;(2)解:由题意得,w=-3x2+360x-9600=900,解得:x1=50,x2=70>55(舍),答:若每日销售利润达到900元,售价为50元;(3)解:w=-3x2+360x-9600=-3(x-60)2+1200,∵a=-3<0,∴抛物线开口向下.又∵对称轴为x=60,∴当x<60,w随x的增大而增大,由于50≤x≤55,∴当x=55时,w的最大值为1125元.∴当销售价为55元时,可以获得最大利润,为1125元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.5、 (1)(2)当时,有最大值,最大值是(3)点的坐标为,,,【解析】【分析】(1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;(2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;(3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.(1)解:∵抛物线与轴交于、两点,∴设抛物线解析式为,将点坐标代入,得:,解得:,抛物线解析式为;(2)解:设直线的函数解析式为,∵直线过点,,∴,解得,∴,设,, ∴,∵,,∴,∴,∵轴,∴,∴,又∵,在中,∴,∵,∴当时,有最大值,最大值是;(3)解:抛物线的对称轴为直线, 设P(1,t),而B(3,0),C(0,3),∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,①当是斜边时,,解得:;②当是斜边时,,解得:;③当是斜边时,, 整理,得:,解得:,故点的坐标为:,,,【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.
相关试卷
这是一份九年级下册第30章 二次函数综合与测试课时作业,共30页。试卷主要包含了二次函数y=ax2+bx+c,同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份数学九年级下册第30章 二次函数综合与测试课时训练,共34页。试卷主要包含了若二次函数y=ax2+bx+c,二次函数图像的顶点坐标是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试精练,共40页。试卷主要包含了根据表格对应值,已知点,若二次函数y=a等内容,欢迎下载使用。