开学活动
搜索
    上传资料 赚现金

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数单元测试练习题(精选)

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数单元测试练习题(精选)第1页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数单元测试练习题(精选)第2页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数单元测试练习题(精选)第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试单元测试课时训练

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试单元测试课时训练,共40页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
    A.B.
    C.D.
    2、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
    A.y≤3B.y≤6C.y≥-3D.y≥6
    4、已知二次函数的图象经过,,则b的值为( )
    A.2B.C.4D.
    5、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )
    A.2个B.3个C.4个D.5个
    6、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )
    A.
    B.当时,随的增大而增大
    C.
    D.是一元二次方程的一个根
    7、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
    A.1个B.2个C.3个D.4个
    8、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
    A.B.C.D.
    9、若二次函数与轴的一个交点为,则代数式的值为( )
    A.B.C.D.
    10、二次函数的图像如图所示,那么点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
    2、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).
    3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.
    4、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.
    5、已知抛物线,将其图象先向右平移1个单位长度,再向上平移2个单位长度,则得到的抛物线解析式为________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).
    (1)求此抛物线的解析式;
    (2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
    (3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
    2、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.
    (1)求抛物线的表达式;
    (2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
    (3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.
    3、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    4、如图,抛物线与x轴交于点A,B,与y轴交于点C.点P是线段BC上的动点(点P不与点B,C重合),连结AP并延长AP交抛物线于另一点Q,连结CQ,BQ,设点Q的横坐标为x.
    (1)①写出A,B,C的坐标:A( ),B( ),C( );
    ②求证:是直角三角形;
    (2)记的面积为S,求S关于x的函数表达式;
    (3)在点P的运动过程中,是否存在最大值?若存在,求出的最大值;若不存在,请说明理由.
    5、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.
    (1)求该抛物线的解析式;
    (2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
    (3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,
    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,
    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    2、D
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
    【详解】
    解:由势力的线与y轴正半轴相交可知c>0,
    对称轴x=-<0,得b0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    8、C
    【解析】
    【分析】
    根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
    【详解】
    解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
    ∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
    平移后的抛物线经过三点、、,
    故选C
    【点睛】
    本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
    9、D
    【解析】
    【分析】
    把代入即可求出,则,进而可求出代数式的值.
    【详解】
    解:二次函数与轴的一个交点为,
    时,,


    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
    10、C
    【解析】
    【分析】
    根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.
    【详解】
    由函数图像可得:
    ∵抛物线开口向上,
    ∴a>0,
    又∵对称轴在y轴右侧,
    ∴,
    ∴b

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试课后测评:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课后测评,共26页。

    初中数学第30章 二次函数综合与测试当堂达标检测题:

    这是一份初中数学第30章 二次函数综合与测试当堂达标检测题,共34页。试卷主要包含了若二次函数y=a,对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    初中冀教版第30章 二次函数综合与测试达标测试:

    这是一份初中冀教版第30章 二次函数综合与测试达标测试,共30页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map