年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项测评练习题(精选)

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项测评练习题(精选)第1页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项测评练习题(精选)第2页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项测评练习题(精选)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第30章 二次函数综合与测试达标测试

    展开

    这是一份初中冀教版第30章 二次函数综合与测试达标测试,共30页。
    九年级数学下册第三十章二次函数专项测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、抛物线y=4(2x﹣3)2+3的顶点坐标是(  )
    A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)
    2、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
    A.秒 B.秒 C.秒 D.1秒
    3、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )

    A. B. C. D.
    4、若二次函数与轴的一个交点为,则代数式的值为( )
    A. B. C. D.
    5、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )

    A. B.
    C. D.
    6、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图(  )
    A. B.
    C. D.
    7、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A. B.
    C. D.
    8、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
    A. B. C. D.
    9、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为(  )

    A.4米 B.10米 C.4米 D.12米
    10、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知二次函数的图象如图所示,有下列五个结论:①;②;③;④;⑤(为实数且).其中正确的结论有______(只填序号).

    2、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
    3、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
    4、将抛物线y=﹣2x2+3x+1向下平移3个单位,所得的抛物线的表达式是_____.
    5、已知二次函数y=x2+bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:
    x


    0
    1
    2
    3

    y

    0



    0

    (1)求该二次函数的表达式;
    (2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.
    2、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    3、在平面直角坐标系xOy中的图形W与图形N,如果图形W与图形N有两个交点,我们则称图形W与图形N互为“友好图形”.
    (1)已知A(-1,1),B(2,1)则下列图形中与线段AB互为“友好图形”的是   ;
    ①抛物线y=x2;
    ②双曲线;
    ③以O为圆心1为半径的圆.
    (2)已知:图形W为以O为圆心,1为半径的圆,图形N为直线y=x+b,若图形W与图形N互为“友好图形”,求b的取值范围.
    (3)如图,已知,,,图形W是以(t,0)为圆心,1为半径的圆,若图形W与△ABC互为“友好图形”,直接写出t的取值范围.

    4、如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y().

    (1)求y与x的函数关系式;
    (2)求所围矩形苗圃ABCD的面积最大值;
    5、如图,在平面直角坐标系中,开口向上的抛物线与轴交于、两点,为抛物线的顶点,为坐标原点.若、()的长分别是方程的两根,且.

    (1)求抛物线对应的二次函数的解析式;
    (2)过点作交抛物线于点,求点的坐标;
    (3)在(2)的条件下,过点任作直线交线段于点,设点、点到直线的距离分别为、,试求的最大值.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据顶点式的顶点坐标为求解即可
    【详解】
    解:抛物线的顶点坐标是
    故选A
    【点睛】
    本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.
    2、A
    【解析】
    【分析】
    根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
    【详解】
    解:由题意得,
    当h=3时,,
    解得,
    ∴球不低于3米的持续时间是1-0.6=0.4(秒),
    故选:A.
    【点睛】
    此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
    3、B
    【解析】
    【分析】
    直接利用图象设出抛物线解析式,进而得出答案.
    【详解】
    ∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
    ∴设抛物线解析式为y=ax2,点B(45,-78),
    ∴-78=452a,
    解得:a=,
    ∴此抛物线钢拱的函数表达式为,
    故选:B.
    【点睛】
    本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
    4、D
    【解析】
    【分析】
    把代入即可求出,则,进而可求出代数式的值.
    【详解】
    解:二次函数与轴的一个交点为,
    时,,


    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
    5、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,

    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,

    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    6、B
    【解析】
    【分析】
    分别利用函数解析式分析图象得出答案.
    【详解】
    解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
    B、两函数图象符合题意;
    C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
    D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
    7、B
    【解析】
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    8、C
    【解析】
    【分析】
    根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
    【详解】
    解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
    ∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
    平移后的抛物线经过三点、、,


    故选C
    【点睛】
    本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
    9、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    10、B
    【解析】
    【分析】
    由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
    【详解】
    解:由题意知,平移后的抛物线解析式为
    将代入解析式得,与A中点坐标不同,故不符合要求;
    将代入解析式得,与B中点坐标相同,故符合要求;
    将代入解析式得,与C中点坐标不同,故不符合要求;
    将代入解析式得,与D中点坐标不同,故不符合要求;
    故选B.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
    二、填空题
    1、③④⑤
    【解析】
    【分析】
    先利用二次函数的开口方向,与轴交于正半轴,二次函数的对称轴为:判断的符号,可判断①,由图象可得:在第三象限,可判断②,由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,可得点在第一象限,可判断③,由在第四象限,抛物线的对称轴为: 即 可判断④,当时,,当, 此时: 可判断⑤,从而可得答案.
    【详解】
    解:由二次函数的图象开口向下可得:
    二次函数的图象与轴交于正半轴,可得
    二次函数的对称轴为: 可得
    所以: 故①不符合题意;
    由图象可得:在第三象限,

    故②不符合题意;
    由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,
    点在第一象限,
    故③符合题意;
    在第四象限,

    抛物线的对称轴为:


    故④符合题意;
    当时,,
    当,
    此时:
    故⑤符合题意;
    综上:符合题意的有:③④⑤,
    故答案为:③④⑤.
    【点睛】
    本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.
    2、
    【解析】
    【分析】
    根据点,的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.
    【详解】
    解:抛物线经过点和点,
    抛物线的对称轴为直线.
    故答案为:.
    【点睛】
    本题考查了二次函数的性质,解题的关键是根据抛物线的对称性,找出抛物线的对称轴.
    3、
    【解析】
    【分析】
    (1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
    【详解】
    (1)解:,
    故答案为:.
    (2)当 时,
    当时,
    ∴ 与的大小关系是,
    故答案为:.
    【点睛】
    本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
    4、
    【解析】
    【分析】
    根据向下平移,纵坐标要减去3,即可得到答案.
    【详解】
    解:抛物线向下平移3个单位,
    抛物线的解析式为.
    故答案为:.
    【点睛】
    主要考查了函数图象的平移,解题的关键是要求熟练掌握平移的规律:左加右减,上加下减.
    5、 4 (2,7)
    【解析】
    【分析】
    由对称轴公式即可求得b,把解析式化成顶点式即可求得顶点坐标.
    【详解】
    解:∵二次函数y=x2+bx+3图象的对称轴为x=2,
    ∴−=2,
    ∴b=4,
    ∴二次函数y=−x2+4x+3,
    ∵y=−x2+4x+3=−(x−2)2+7,
    ∴顶点坐标是(2,7),
    故答案为:4,(2,7).
    【点睛】
    本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.
    三、解答题
    1、 (1)二次函数的表达式为: ;
    (2).
    【解析】
    【分析】
    (1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;
    (2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.
    (1)
    解:观察表格数据,由、可知,二次函数图象的顶点坐标为,
    设二次函数的表达式为,
    把代入得,
    -3=a(0-1)2-4,
    ∴,
    ∴,
    即 ;
    (2)
    解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同,
    设二次函数的表达式为,
    在y轴上且在函数图象上,
    将其代入函数表达式为:,
    解得:,
    ∴关于y轴对称的图象所对应的函数表达式为,
    故答案为:.
    【点睛】
    本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.
    2、 (1)在,见解析
    (2)a=﹣1,b=2
    (3)当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为
    【解析】
    【分析】
    (1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
    (2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
    (3)设平移后的抛物线为y=﹣+px+q,其顶点坐标为(,),根据题意得出=,由抛物线y=﹣+px+q与y轴交点的纵坐标为q,即可得出q=-=,从而得出q的最大值.
    (1)
    点B是在直线y=x+m上,理由如下:
    ∵直线y=x+m经过点A(1,2),
    ∴2=1+m,解得m=1,
    ∴直线为y=x+1,
    把x=2代入y=x+1得y=3,
    ∴点B(2,3)在直线y=x+m上;
    (2)
    ∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
    ∴抛物线只能经过A、C两点,
    把A(1,2),C(2,1)代入y=a+bx+1得,
    解得a=﹣1,b=2;
    (3)
    由(2)知,抛物线为y=﹣+2x+1,
    设平移后的抛物线为y=﹣+px+q,
    ∴顶点坐标为(,),
    ∵其顶点仍在直线y=x+1上,
    ∴=,
    ∴q=-=,
    ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
    【点睛】
    本题考查了图像与点的关系,待定系数法确定函数解析式,配方法求二次函数最值,熟练掌握待定系数法,灵活配方求最值是解题的关键.
    3、 (1)①
    (2)b的取值范围是
    (3)t的取值范围是或.
    【解析】
    【分析】
    (1)根据“友好图形”分别作出抛物线,双曲线,以及圆,根据定义进行判断即可;
    (2)作⊙O的两条切线,过点O作OQ⊥KL,求得的值,根据对称性即可求得的取值范围;
    (3)如图5,过点E作EQ⊥AC于Q,当图形W是⊙D时,⊙D与AB相切,此时,当图形W是⊙E时,⊙E与AB相切,此时,根据的坐标可得,BAy轴,BCx轴,可得出⊙E与AC相离,进而可得图形W与△ABC有两个交点时,t的取值是,如图6,当⊙E'与AC相切时,设切点为G,连接E'G,同理得,当⊙D'与AC相切时,设切点为H,连接D'H,同理得,t的取值是.综合2种情形即可得t的取值范围
    (1)
    ①如图1,当y=1时,x2=1,

    ∴x=±1,∴抛物线y=x2与线段AB有两个交点为(1,1)和(-1,1),
    ∴抛物线y=x2与线段AB互为“友好图形”;
    ②如图2,当y=1时,,

    ∴x=1,
    ∴双曲线与线段AB有1个交点为(1,1),
    ∴抛物线与线段AB不是互为“友好图形”.
    ③如图3,以O为圆心1为半径的圆与线段AB有1个交点为(0,1),

    ∴以O为圆心1为半径的圆与线段AB不是互为“友好图形”;
    故答案为:①;
    (2)
    如图4,作⊙O的两条切线,这两条切线与直线y=kx+b平行,过点O作OQ⊥KL,

    ∵OQ=1,△OQK是等腰直角三角形,
    ∴,
    ∴b的取值范围是.
    (3)
    如图5,过点E作EQ⊥AC于Q,

    ∵,,图形W是以(t,0)为圆心,1为半径的圆,
    当图形W是⊙D时,⊙D与AB相切,此时,
    当图形W是⊙E时,⊙E与AB相切,此时,
    ∵,,,
    ∴BAy轴,BCx轴,
    ∴∠ABC=90°,
    ∵AB=4,,
    ∴AC=8,
    ∴∠C=30°,
    ∴∠AFD=∠C=30°,
    ∴,
    ∴,
    ∴,
    ∴⊙E与AC相离,
    ∴图形W与△ABC有两个交点时,t的取值是.
    如图6,当⊙E'与AC相切时,设切点为G,连接E'G,

    同理得,
    ∴,
    当⊙D'与AC相切时,设切点为H,连接D'H,同理得,
    ∴,
    ∴图形W与△ABC有两个交点时,t的取值是.
    综上,若图形W与△ABC互为“友好图形”,t的取值范围是或.
    【点睛】
    本题考查了新定义,抛物线的性质,反比例函数图象的性质,圆的切线的性质,含30度角的直角三角形的性质,直线与圆的位置关系,理解题意,熟练掌握直线与圆的位置关系是解题的关键.
    4、 (1)y=﹣2x2+18x
    (2)m2
    【解析】
    【分析】
    (1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y(),则,根据矩形的面积公式求解即可;
    (2)根据顶点坐标公式计算即可求解
    (1)
    设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y(),则,
    根据题意得:y=x(18﹣2x)=﹣2x2+18x;
    (2)
    二次函数y=﹣2x2+18x(0<x<9),
    ∵a=﹣2<0,
    ∴二次函数图象开口向下,
    且当x=﹣=时,y取得最大值,
    最大值为y=×(18﹣2×)=(m2);
    【点睛】
    本题考查了一元二次函数的应用,用代数式表示出是解题的关键.
    5、 (1)
    (2)点的坐标为
    (3)
    【解析】
    【分析】
    (1)先求出的两根,可得点的坐标为,点的坐标为.从而得到的坐标为.再由.可得的坐标为.然后设抛物线对应的二次函数的解析式为.把点代入,即可求解;
    (2)根据题意可设点的坐标为,则有.再由点在抛物线上,可得.从而得到,即可求解;
    (3)由(2)知:,而,可得到,然后过点A作.根据三角形的面积,可得.再由,可得,即可求解.
    (1)
    解:如图,过点作轴于,则为的中点.

    解方程得:或.
    而,则点的坐标为,点的坐标为.
    ∴的坐标为.
    又因为,
    ∴.
    ∴的坐标为.
    设抛物线对应的二次函数的解析式为.
    ∵抛物线过点,则,解得:.
    故抛物线对应的二次函数的解析式为.
    (2)
    ∵,
    ∴.
    又∵,
    设点的坐标为,则有.
    ∵点在抛物线上,
    ∴.
    化简得:.
    解得:,(舍去).
    故点的坐标为.
    (3)
    由(2)知:,而,
    ∴.
    过点A作.

    ∵,
    ∴.
    ∵,
    ∴.

    即此时的最大值为.
    【点睛】
    本题主要考查了二次函数与三角形的综合题,等腰三角形的性质,熟练掌握二次函数的图象和性质等腰三角形的性质是解题的关键.

    相关试卷

    初中第二十章 函数综合与测试精练:

    这是一份初中第二十章 函数综合与测试精练,共19页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试课后练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    九年级下册第30章 二次函数综合与测试练习题:

    这是一份九年级下册第30章 二次函数综合与测试练习题,共33页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map